We develop an algorithmic framework that finds an optimal solution by enumerating some feasible solutions, which number is bounded by a specially derived Variable Parameter (VP) with a favorable asymptotic behavior. We build a VP algorithm for a strongly $\mathsf{NP}$-hard single-machine scheduling problem. The target VP $\nu$ is the number of jobs with some special properties, the so-called emerging jobs. At phase 1 a partial solution including $n-\nu$ non-emerging jobs is constructed in a low degree polynomial time. At phase 2 less than $\nu!$ permutations of the $\nu$ emerging jobs are considered, each of them being incorporated into the partial schedule of phase 1. Based on an earlier conducted experimental study, in practice, $\nu/n$ varied from $1/4$ for small problem instances to $1/10$ for the largest tested instances. We illustrate how the proposed method can be used to build a polynomial-time approximation scheme (PTAS) with the worst-case time complexity $O(\kappa!\kappa k n \log n)$, where $\kappa$, $\kappa<\nu< n$, is a VP and the corresponding approximation factor is $1+1/k$, with $k\kappa<k$. This is better than the time complexity of the earlier known approximation schemes. Using an intuitive probabilistic model, we give more realistic bounds on the running time of the VP algorithm and the PTAS, which are far below the worst-case bounds $\nu!$ and $\kappa!$.
翻译:暂无翻译