The Android mining sandbox approach consists in running dynamic analysis tools on a benign version of an Android app and recording every call to sensitive APIs. Later, one can use this information to (a) prevent calls to other sensitive APIs (those not previously recorded) or (b) run the dynamic analysis tools again in a different version of the app -- in order to identify possible malicious behavior. Although the use of dynamic analysis for mining Android sandboxes has been empirically investigated before, little is known about the potential benefits of combining static analysis with the mining sandbox approach for identifying malicious behavior. As such, in this paper we present the results of two empirical studies: The first is a non-exact replication of a previous research work from Bao et al., which compares the performance of test case generation tools for mining Android sandboxes. The second is a new experiment to investigate the implications of using taint analysis algorithms to complement the mining sandbox approach in the task to identify malicious behavior. Our study brings several findings. For instance, the first study reveals that a static analysis component of DroidFax (a tool used for instrumenting Android apps in the Bao et al. study) contributes substantially to the performance of the dynamic analysis tools explored in the previous work. The results of the second study show that taint analysis is also practical to complement the mining sandboxes approach, improve the performance of the later strategy in at most 28.57%.
翻译:Android采矿沙箱方法包括运行一个良性版本的Android 应用程序的动态分析工具,并记录对敏感API的每一个呼叫。后来,人们可以使用这些信息来:(a) 防止呼叫其他敏感API(以前没有记录过),或(b) 在不同的应用程序版本中再次运行动态分析工具 -- -- 以便查明可能的恶意行为。虽然以前曾对采矿和机器人沙箱使用动态分析法进行经验性调查,但对于将静态分析与采矿沙箱方法相结合以识别恶意行为的潜在好处知之甚少。因此,我们在此文件中介绍了两项经验研究的结果:首先,对Bao 等人的先前一项研究工作进行不完全的复制,该研究比较了采矿和机器人沙箱试验生成工具的性能。第二个新实验旨在调查使用污点分析算法来补充采矿沙箱方法在查明恶意行为方面的影响。我们的研究得出了若干结论。例如,第一个研究揭示了DroidFax的静态分析部分(这是Bao等人公司先前一项用于仪器应用沙箱的绩效分析工具) 也是Baoato a prographal ladeal 研究中的一项结果。