Automated detection of contraband items in X-ray images can significantly increase public safety, by enhancing the productivity and alleviating the mental load of security officers in airports, subways, customs/post offices, etc. The large volume and high throughput of passengers, mailed parcels, etc., during rush hours make it a Big Data analysis task. Modern computer vision algorithms relying on Deep Neural Networks (DNNs) have proven capable of undertaking this task even under resource-constrained and embedded execution scenarios, e.g., as is the case with fast, single-stage, anchor-based object detectors. This paper proposes a two-fold improvement of such algorithms for the X-ray analysis domain, introducing two complementary novelties. Firstly, more efficient anchors are obtained by hierarchical clustering the sizes of the ground-truth training set bounding boxes; thus, the resulting anchors follow a natural hierarchy aligned with the semantic structure of the data. Secondly, the default Non-Maximum Suppression (NMS) algorithm at the end of the object detection pipeline is modified to better handle occluded object detection and to reduce the number of false predictions, by inserting the Efficient Intersection over Union (E-IoU) metric into the Weighted Cluster NMS method. E-IoU provides more discriminative geometrical correlations between the candidate bounding boxes/Regions-of-Interest (RoIs). The proposed method is implemented on a common single-stage object detector (YOLOv5) and its experimental evaluation on a relevant public dataset indicates significant accuracy gains over both the baseline and competing approaches. This highlights the potential of Big Data analysis in enhancing public safety.
翻译:暂无翻译