Deepfake technologies are often associated with deception, misinformation, and identity fraud, raising legitimate societal concerns. Yet such narratives may obscure a key insight: deepfakes embody sophisticated capabilities for sensory manipulation that can alter human perception, potentially enabling beneficial applications in domains such as healthcare and education. Realizing this potential, however, requires understanding how the technology is conceptualized across disciplines. This paper analyzes 826 peer-reviewed publications from 2017 to 2025 to examine how deepfakes are defined and understood in the literature. Using large language models for content analysis, we categorize deepfake conceptualizations along three dimensions: Identity Source (the relationship between original and generated content), Intent (deceptive versus non-deceptive purposes), and Manipulation Granularity (holistic versus targeted modifications). Results reveal substantial heterogeneity that challenges simplified public narratives. Notably, a subset of studies discuss non-deceptive applications, highlighting an underexplored potential for social good. Temporal analysis shows an evolution from predominantly threat-focused views (2017 to 2019) toward recognition of beneficial applications (2022 to 2025). This study provides an empirical foundation for developing nuanced governance and research frameworks that distinguish applications warranting prohibition from those deserving support, showing that, with safeguards, deepfakes' realism can serve important social purposes beyond deception.


翻译:深度伪造技术常与欺骗、虚假信息和身份欺诈相关联,引发了合理的社会担忧。然而,这类叙事可能掩盖了一个关键洞见:深度伪造体现了能够改变人类感知的、复杂的感官操控能力,这可能在医疗保健和教育等领域实现有益的应用。然而,要实现这一潜力,需要理解该技术在跨学科中是如何被概念化的。本文分析了2017年至2025年间的826篇同行评议出版物,以考察文献中如何定义和理解深度伪造。我们利用大语言模型进行内容分析,将深度伪造的概念化沿三个维度进行分类:身份来源(原始内容与生成内容之间的关系)、意图(欺骗性与非欺骗性目的)以及操控粒度(整体性修改与针对性修改)。结果揭示了显著的异质性,这对简化的公共叙事构成了挑战。值得注意的是,一部分研究讨论了非欺骗性应用,突显了其为社会造福的、尚未被充分探索的潜力。时间分析显示,观点从主要关注威胁(2017年至2019年)演变为认识到有益应用(2022年至2025年)。本研究为制定精细化的治理和研究框架提供了经验基础,该框架旨在区分需要禁止的应用与值得支持的应用,并表明在保障措施下,深度伪造的逼真性可以服务于欺骗之外的重要社会目的。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
12+阅读 · 2021年3月24日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
43+阅读 · 2024年1月25日
Arxiv
12+阅读 · 2021年3月24日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员