This paper is concerned with a contemporary Bayesian approach to the effect of temperature on developmental rates. We develop statistical methods using recent computational tools to model four commonly used ecological non-linear mathematical curves that describe arthropods' developmental rates. Such models address the effect of temperature fluctuations on the developmental rate of arthropods. In addition to the widely used Gaussian distributional assumption, we also explore Inverse Gamma--based alternatives, which naturally accommodate adaptive variance fluctuation with temperature. Moreover, to overcome the associated parameter indeterminacy in the case of no development, we suggest the Zero Inflated Inverse Gamma model. The ecological models are compared graphically via posterior predictive plots and quantitatively via Marginal likelihood estimates and Information criteria values. Inference is performed using the Stan software and we investigate the statistical and computational efficiency of its Hamiltonian Monte Carlo and Variational Inference methods. We explore model uncertainty and use Bayesian Model Averaging framework for robust estimation of the key ecological parameters
翻译:本文涉及当代巴伊西亚对温度对发育速率的影响问题。我们利用最近的计算工具开发统计方法,以模型4个常用的非线性生态非线性数学曲线来描述节肢动物的发育速率。这些模型处理温度波动对节肢动物发育速率的影响。除了广泛使用的高斯分布假设外,我们还探索自然适应适应温度差异波动的基于伽玛的自然替代物。此外,为了克服在无发展的情况下相关的参数不确定性,我们建议采用零充气反伽玛模型。生态模型通过后方预测图进行图形化比较,并通过边际概率估计和信息标准值进行定量比较。推论是使用斯坦软件进行的,我们调查其汉密尔顿蒙特卡洛和Variation推论方法的统计和计算效率。我们探索模型不确定性,并使用巴伊西亚模型误判框架对关键生态参数进行可靠估计。我们使用Stan软件和我们调查其汉密尔顿蒙特卡洛和Variation推论方法的统计和计算效率。