In this work, we study the utility of graph embeddings to generate latent user representations for trust-based collaborative filtering. In a cold-start setting, on three publicly available datasets, we evaluate approaches from four method families: (i) factorization-based, (ii) random walk-based, (iii) deep learning-based, and (iv) the Large-scale Information Network Embedding (LINE) approach. We find that across the four families, random-walk-based approaches consistently achieve the best accuracy. Besides, they result in highly novel and diverse recommendations. Furthermore, our results show that the use of graph embeddings in trust-based collaborative filtering significantly improves user coverage.
翻译:在这项工作中,我们研究了图形嵌入的有用性,以生成基于信任的协作过滤的潜在用户代表。在冷冷的启动环境中,我们用三种公开的数据集评估了四个方法组的方法:(一) 以系数为基础的方法,(二) 随机步行法,(三) 深层次学习法,(四) 大型信息网络嵌入法。我们发现,在四个家庭中,随机行进法始终达到最佳的准确性。此外,它们产生了非常新颖和多样的建议。此外,我们的结果显示,在基于信任的协作过滤中使用图形嵌入方法极大地改善了用户的覆盖面。