In this paper, we present a novel approach for conformal prediction (CP), in which we aim to identify a set of promising prediction candidates -- in place of a single prediction. This set is guaranteed to contain a correct answer with high probability, and is well-suited for many open-ended classification tasks. In the standard CP paradigm, the predicted set can often be unusably large and also costly to obtain. This is particularly pervasive in settings where the correct answer is not unique, and the number of total possible answers is high. We first expand the CP correctness criterion to allow for additional, inferred "admissible" answers, which can substantially reduce the size of the predicted set while still providing valid performance guarantees. Second, we amortize costs by conformalizing prediction cascades, in which we aggressively prune implausible labels early on by using progressively stronger classifiers -- again, while still providing valid performance guarantees. We demonstrate the empirical effectiveness of our approach for multiple applications in natural language processing and computational chemistry for drug discovery.


翻译:在本文中,我们提出了一个符合预测(CP)的新颖方法,我们的目标是确定一组有希望的预测对象 -- -- 以取代单一预测。这套方法保证包含一个概率很高的正确答案,并适合于许多开放式分类任务。在标准的CP范式中,预测的成套方法往往不易大,而且成本很高。这在正确的答案并不独特,答案总数也很高的环境下特别普遍。我们首先扩大了CP的正确性标准,以允许更多的、推断的“可接受”答案,这可以大大缩小预测的一套答案的大小,同时仍然提供有效的绩效保证。第二,我们通过符合预测级联来摊开成本,在使用逐渐增强的分类器的早期,我们大力淡化不可信的标签 -- -- 同时仍然提供有效的性能保证。我们展示了我们在天然语言处理和药物发现计算化学中多种应用的方法的经验效果。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
5+阅读 · 2020年3月16日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员