In this paper, we present an Intersection-over-Union (IoU) guided two-stage 3D object detector with a voxel-to-point decoder. To preserve the necessary information from all raw points and maintain the high box recall in voxel based Region Proposal Network (RPN), we propose a residual voxel-to-point decoder to extract the point features in addition to the map-view features from the voxel based RPN. We use a 3D Region of Interest (RoI) alignment to crop and align the features with the proposal boxes for accurately perceiving the object position. The RoI-Aligned features are finally aggregated with the corner geometry embeddings that can provide the potentially missing corner information in the box refinement stage. We propose a simple and efficient method to align the estimated IoUs to the refined proposal boxes as a more relevant localization confidence. The comprehensive experiments on KITTI and Waymo Open Dataset demonstrate that our method achieves significant improvements with novel architectures against the existing methods. The code is available on Github URL\footnote{\url{https://github.com/jialeli1/From-Voxel-to-Point}}.
翻译:在本文中,我们展示了一个带有 voxel-point 解码器的两阶段 3D 导航对象探测器。为了保存所有原始点的必要信息并保持基于 voxel 的区域提案网(RPN) 的高框回溯,我们建议用一个残余的 voxel-to-point 解码器来提取基于 voxel 的 RPN 的地图-视图特征之外的点特征。 我们使用一个 3D 区域利益区(ROI) 与作物的匹配,并将功能与建议框相匹配,以准确定位对象位置。 RoI- 统一功能最终与角几何结构嵌入组合在一起,以提供箱改进阶段中可能缺失的角信息。我们提出了一个简单而有效的方法,将估计的 IoU 与完善的提案框相匹配,作为更相关的本地化信任。 KITTI 和 Waymo Open Dataset的全面实验表明,我们的方法与新结构比现有方法有了显著的改进。 代码可在 Github URL URL_ foototteot@_Girus_Gyal_gyal_Gyal_gus_Gyal_gus_gus_Gyal_gus__gus_gus_gus_grous_gus_gus____gyalbus____gus/com/comm.comcomcomcomcomm.comm.comm.comm.comm.com.com.