Let $\mathscr C$ be a hereditary class of graphs. Assume that for every $p$ there is a hereditary NIP class $\mathscr D_p$ with the property that the vertex set of every graph $G\in\mathscr C$ can be partitioned into $N_p=N_p(G)$ parts in such a way that the union of any $p$ parts induce a subgraph in $\mathscr D_p$ and $\log N_p(G)\in o(\log |G|)$. We prove that $\mathscr C$ is (monadically) NIP. Similarly, if every $\mathscr D_p$ is stable, then $\mathscr C$ is (monadically) stable. Results of this type lead to the definition of decomposition horizons as closure operators. We establish some of their basic properties and provide several further examples of decomposition horizons.
翻译:Let\ mathscr C$ 是一个遗传性的图表类别。 假设每1美元都有遗传的NIP等级$\ mathscr D_ p$ 和属性, 每个图形$G\ in\ mathscr C$的顶点可以分割成 $N_ p=N_ p( G) 元件, 这样一来, 任何美元部件的组合都会以 $\ mathcr D_ p$ 和 $\log N_ p( G)\ in o (\log @ G) $. 我们证明, $\ mathcr C$ 是( monadical) NIP 。 同样, 如果每张$\ mathcr D_ p$是稳定的, 那么$\ mathcr C$ 是( monadal) 稳定的。 这种类型的导结果导致确定解剖面地平线为关闭操作员。 我们建立他们的一些基本属性, 并提供解剖面地平面的更多例子 。