Graph pattern mining (GPM) is an important application that identifies structures from graphs. Despite the recent progress, the performance gap between the state-of-the-art GPM systems and an efficient algorithm--pattern decomposition--is still at least an order of magnitude. This paper clears the fundamental obstacles of adopting pattern decomposition to a GPM system. First, the performance of pattern decomposition algorithms depends on how to decompose the whole pattern into subpatterns. The original method performs complexity analysis of algorithms for different choices, and selects the one with the lowest complexity upper bound. Clearly, this approach is not feasible for average or even expert users. To solve this problem, we develop a GPM compiler with conventional and GPM-specific optimizations to generate algorithms for different decomposition choices, which are evaluated based on an accurate cost model. The executable of the GPM task is obtained from the algorithm with the best performance. Second, we propose a novel partial-embedding API that is sufficient to construct advanced GPM applications while preserving pattern decomposition algorithm advantages. Compared to state-of-the-art systems, our new GPM system, DecoMine, developed based on the ideas, reduces the execution time of GPM on large graphs and patterns from days to a few hours with low programming effort.


翻译:尽管最近取得了进展,但最先进的GPM系统与高效的算法-模式分解系统之间的性能差距至少仍然是一个数量级。本文件明确了采用模式分解到GPM系统的根本障碍。首先,模式分解算法的性能取决于如何将整个模式分解成亚型。最初的方法对不同选择的算法进行了复杂分析,并选择了最复杂最难选择的。显然,对于普通用户甚至专家用户来说,这一方法并不可行。为了解决这个问题,我们开发了一个具有常规和GPM特定优化的GPM汇编器,以生成不同分解选择的算法,这种算法是根据准确的成本模型进行评估的。GPM任务的执行能力取决于如何从算法中分解成子体。第二,我们建议一种新型的局部组合算法,它足以构建先进的GPM应用程序,同时保留模式分解算法的优势。为了解决这个问题,我们开发了一个具有常规和特定精度的GPM模型的GPM模型, 将一个基于州级的时程的时程, 降低我们的系统。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月14日
Arxiv
0+阅读 · 2022年12月13日
Arxiv
0+阅读 · 2022年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员