To predict the future evolution of dynamical systems purely from observations of the past data is of great potential application. In this work, a new formulated paradigm of reservoir computing is proposed for achieving model-free predication for both low-dimensional and very large spatiotemporal chaotic systems. Compared with traditional reservoir computing models, it is more efficient in terms of predication length, training data set required and computational expense. By taking the Lorenz and Kuramoto-Sivashinsky equations as two classical examples of dynamical systems, numerical simulations are conducted, and the results show our model excels at predication tasks than the latest reservoir computing methods.


翻译:纯粹从以往数据的观察中预测动态系统的未来演变,具有巨大的潜在应用潜力。在这项工作中,提出了一个新的储油层计算模式,以实现低维和非常大的时空混乱系统的无模型预言。与传统的储油层计算模型相比,在预言长度、所需培训数据集和计算费用方面,它效率更高。通过将洛伦茨和仓本-西瓦申斯基方程式作为两个典型的动态系统典型例子,进行了数字模拟,结果显示我们的模型在预言任务方面比最新的储油层计算方法要出色。

0
下载
关闭预览

相关内容

【干货书】计算机科学,647页pdf,Computer Science
专知会员服务
45+阅读 · 2021年5月10日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书-IBM推荐】机器学习傻瓜式入门,75页pdf
专知会员服务
49+阅读 · 2020年9月29日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关VIP内容
【干货书】计算机科学,647页pdf,Computer Science
专知会员服务
45+阅读 · 2021年5月10日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书-IBM推荐】机器学习傻瓜式入门,75页pdf
专知会员服务
49+阅读 · 2020年9月29日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员