In edge computing use cases (e.g., smart cities), where several users and devices may be in close proximity to each other, computational tasks with similar input data for the same services (e.g., image or video annotation) may be offloaded to the edge. The execution of such tasks often yields the same results (output) and thus duplicate (redundant) computation. Based on this observation, prior work has advocated for "computation reuse", a paradigm where the results of previously executed tasks are stored at the edge and are reused to satisfy incoming tasks with similar input data, instead of executing these incoming tasks from scratch. However, realizing computation reuse in practical edge computing deployments, where services may be offered by multiple (distributed) edge nodes (servers) for scalability and fault tolerance, is still largely unexplored. To tackle this challenge, in this paper, we present Reservoir, a framework to enable pervasive computation reuse at the edge, while imposing marginal overheads on user devices and the operation of the edge network infrastructure. Reservoir takes advantage of Locality Sensitive Hashing (LSH) and runs on top of Named-Data Networking (NDN), extending the NDN architecture for the realization of the computation reuse semantics in the network. Our evaluation demonstrated that Reservoir can reuse computation with up to an almost perfect accuracy, achieving 4.25-21.34x lower task completion times compared to cases without computation reuse.


翻译:在边缘再利用案例中(例如智能城市),一些用户和装置可能彼此接近,一些用户和装置可能相互接近的边缘再利用案例(例如智能城市),与同类服务(例如图像或视频注释)输入数据相似的计算任务可能被卸到边缘。执行这类任务往往产生相同的结果(产出),从而重复(冗余)计算。根据这一观察,先前的工作提倡“再利用”这一范例,即以前执行的任务的结果储存在边缘,再利用以类似输入数据满足即将到来的任务,而不是从零开始执行这些即将到来的任务。然而,在实际的边缘计算部署(例如图像或视频注释说明)中实现计算再利用,而多种(分配的)边缘节点(服务器)可能为可缩放性和错错容性提供服务,但基本上尚未探讨。根据这一观察,我们提出了“再储存”这一框架,以便能够在边缘普遍计算再利用,同时将边端的间接费用强加在用户装置和边缘网络基础设施的运作中,再利用不精确性调整的准确性N型再利用。再利用在实际的边端计算部署中,在实际边端再利用精度部署中实现N型再利用(LS&D)网络的精度,在升级的计算中,在网络的升级的升级后进行,在升级的计算中进行,在升级的实现我们所显示的网络的升级的网络的升级的升级的计算,在升级的升级的升级的升级,在升级,在升级后,在升级的计算,在升级的计算,在升级的计算,在升级的计算,在升级的计算,在升级的计算中,在升级的计算,在升级的计算中,在升级的计算中,在升级的计算中,在升级的计算中,在升级的计算中,在升级后,在升级的计算中,在升级后,在升级的计算,在升级的计算中实现。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
155+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2020年6月12日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员