Background: The detection and extraction of causality from natural language sentences have shown great potential in various fields of application. The field of requirements engineering is eligible for multiple reasons: (1) requirements artifacts are primarily written in natural language, (2) causal sentences convey essential context about the subject of requirements, and (3) extracted and formalized causality relations are usable for a (semi-)automatic translation into further artifacts, such as test cases. Objective: We aim at understanding the value of interactive causality extraction based on syntactic criteria for the context of requirements engineering. Method: We developed a prototype of a system for automatic causality extraction and evaluate it by applying it to a set of publicly available requirements artifacts, determining whether the automatic extraction reduces the manual effort of requirements formalization. Result: During the evaluation we analyzed 4457 natural language sentences from 18 requirements documents, 558 of which were causal (12.52%). The best evaluation of a requirements document provided an automatic extraction of 48.57% cause-effect graphs on average, which demonstrates the feasibility of the approach. Limitation: The feasibility of the approach has been proven in theory but lacks exploration of being scaled up for practical use. Evaluating the applicability of the automatic causality extraction for a requirements engineer is left for future research. Conclusion: A syntactic approach for causality extraction is viable for the context of requirements engineering and can aid a pipeline towards an automatic generation of further artifacts from requirements artifacts.


翻译:暂无翻译

0
下载
关闭预览

相关内容

该杂志提供了一个重点,传播关于软件密集型信息系统或应用程序需求的获取、表示和验证的新结果。欢迎提交理论和应用性意见,但所有文件都必须明确说明: - 这些思想对复杂系统设计的实际影响 - 思考型实践者应该如何评价这些想法 《华尔街日报》的动机是一种多学科的观点,这种观点不仅考虑了软件组件规范方面的需求,而且还考虑了在组织和社会环境中进行的激发、表示和同意需求的活动。为此,人们从软件工程、信息系统、职业社会学、认知和组织心理学、人机交互、计算机支持的合作工作、语言学和哲学等领域寻求贡献,以解决具体的需求工程问题。官网链接:http://dblp.uni-trier.de/db/journals/re/
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员