Polarization is a unique characteristic of transverse wave and is represented by Stokes parameters. Analysis of polarization states can reveal valuable information about the sources. In this paper, we propose a separable low-rank quaternion linear mixing model to polarized signals: we assume each column of the source factor matrix equals a column of polarized data matrix and refer to the corresponding problem as separable quaternion matrix factorization (SQMF). We discuss some properties of the matrix that can be decomposed by SQMF. To determine the source factor matrix in quaternion space, we propose a heuristic algorithm called quaternion successive projection algorithm (QSPA) inspired by the successive projection algorithm. To guarantee the effectiveness of QSPA, a new normalization operator is proposed for the quaternion matrix. We use a block coordinate descent algorithm to compute nonnegative factor activation matrix in real number space. We test our method on the applications of polarization image representation and spectro-polarimetric imaging unmixing to verify its effectiveness.
翻译:极化是反向波的一个独特特征,由斯托克斯参数代表。 对极化状态的分析可以揭示关于源值的宝贵信息。 在本文中,我们提出一个分解的低阶四氟线混合模型,作为极化信号:我们假设源因子矩阵的每列等于一列极化数据矩阵,并将相应的问题称为分辨四氟基基矩阵的因子化(SQMF),我们讨论该矩阵的某些特性,这些特性可以由SQMF解析。为了确定四环空间的源因子矩阵,我们建议采用一种由连续的预测算法所启发的称为四环投算法的超常算法(QSPA)。为了保证QSPA的有效性,我们建议为四氟基体矩阵建立一个新的正常化操作器。我们使用一个块协调的基底算法,在实际数字空间中计算非负因因素激活矩阵。我们测试了两极化图像代表法和光谱-极成像不混合法的应用方法,以核实其有效性。