The aghq package for implementing approximate Bayesian inference using adaptive quadrature is introduced. The method and software are described, and use of the package in making approximate Bayesian inferences in several challenging low- and high-dimensional models is illustrated. Examples include an infectious disease model; an astrostatistical model for estimating the mass of the Milky Way; two examples in non-Gaussian model-based geostatistics including one incorporating zero-inflation which is not easily fit using other methods; and a model for zero-inflated, overdispersed count data. The aghq package is especially compatible with the popular TMB interface for automatic differentiation and Laplace approximation, and existing users of that software can make approximate Bayesian inferences with aghq using very little additional code. The aghq package is available from CRAN and complete code for all examples in this paper can be found at https://github.com/awstringer1/aghq-software-paper-code.
翻译:采用了使用适应性二次曲线实施近似巴伊西亚推断的 aghq 软件包。该方法和软件被描述,并用该软件包在若干具有挑战性的低维和高维模型中进行近似巴伊西亚推断,示例包括传染病模型;用于估计银河质量的天体统计模型;非加西模式基于非加西模式的地质统计学中的两个实例,包括一个包含零通货膨胀(使用其他方法不易使用);一个零充气、超分散计数数据模型。该数据包特别与用于自动区分和拉普尔近距离的流行TMB界面兼容,该软件的现有用户可以使用很少的额外代码用阿赫克来进行近似巴伊西亚的推断。该aghq软件包可从CRAN获得,本文中所有示例的完整代码见https://github.com/awstringer1/aghq-软质-paper-code。