Recent Deep Neural Networks (DNNs) managed to deliver superhuman accuracy levels on many AI tasks. Several applications rely more and more on DNNs to deliver sophisticated services and DNN accelerators are becoming integral components of modern systems-on-chips. DNNs perform millions of arithmetic operations per inference and DNN accelerators integrate thousands of multiply-accumulate units leading to increased energy requirements. Approximate computing principles are employed to significantly lower the energy consumption of DNN accelerators at the cost of some accuracy loss. Nevertheless, recent research demonstrated that complex DNNs are increasingly sensitive to approximation. Hence, the obtained energy savings are often limited when targeting tight accuracy constraints. In this work, we present a dynamically configurable approximate multiplier that supports three operation modes, i.e., exact, positive error, and negative error. In addition, we propose a filter-oriented approximation method to map the weights to the appropriate modes of the approximate multiplier. Our mapping algorithm balances the positive with the negative errors due to the approximate multiplications, aiming at maximizing the energy reduction while minimizing the overall convolution error. We evaluate our approach on multiple DNNs and datasets against state-of-the-art approaches, where our method achieves 18.33% energy gains on average across 7 NNs on 4 different datasets for a maximum accuracy drop of only 1%.


翻译:最近深神经网络(DNN)设法在很多AI任务上提供了超人精度水平。一些应用程序越来越多地依靠DNN来提供尖端服务,DNN加速器正在成为现代系统-芯片中不可分割的组成部分。DNNS按每个推算进行数以百万计的算术操作,DNN加速器结合了数千个乘积单位,导致能源需求增加。采用了近似计算原则,以降低某些精度损失为代价,大幅降低DNN加速器的能源消耗量。然而,最近的研究表明,复杂的DNNN越来越敏感于近似。因此,在瞄准精确度限制时,获得的节能往往有限。在这项工作中,DNNNS使用一种动态可配置近似数的乘数乘数,支持三种操作模式,即精确、正误差和负差。此外,我们提出了一种面向过滤的近似近似近似近似方法,将DNNC加速器的重量与由于近似增加而出现的负差相平衡。我们用负差数计算算法的目的是最大限度地减少能源的精确度,同时最大限度地减少能源的精确度,同时尽量减少整个DNNNNR方法在18位上取得最大收益。我们18种方法上。我们18种平均的能量率方法。我们用在18种不同的标准中,我们用率方法上对18个的能量计算了。我们测算。我们测算。我们测算方法在18个平均的能量法中测取了一种不同的第一种不同的标准。我们测算方法。

0
下载
关闭预览

相关内容

【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
给DNN处理器跑个分 - 指标篇
StarryHeavensAbove
5+阅读 · 2017年7月9日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2020年6月29日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
给DNN处理器跑个分 - 指标篇
StarryHeavensAbove
5+阅读 · 2017年7月9日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员