Spatiotemporal traffic time series (e.g., traffic volume/speed) collected from sensing systems are often incomplete with considerable corruption and large amounts of missing values, preventing users from harnessing the full power of the data. Missing data imputation has been a long-standing research topic and critical application for real-world intelligent transportation systems. A widely applied imputation method is low-rank matrix/tensor completion; however, the low-rank assumption only preserves the global structure while ignores the strong local consistency in spatiotemporal data. In this paper, we propose a low-rank autoregressive tensor completion (LATC) framework by introducing \textit{temporal variation} as a new regularization term into the completion of a third-order (sensor $\times$ time of day $\times$ day) tensor. The third-order tensor structure allows us to better capture the global consistency of traffic data, such as the inherent seasonality and day-to-day similarity. To achieve local consistency, we design the temporal variation by imposing an AR($p$) model for each time series with coefficients as learnable parameters. Different from previous spatial and temporal regularization schemes, the minimization of temporal variation can better characterize temporal generative mechanisms beyond local smoothness, allowing us to deal with more challenging scenarios such "blackout" missing. To solve the optimization problem in LATC, we introduce an alternating minimization scheme that estimates the low-rank tensor and autoregressive coefficients iteratively. We conduct extensive numerical experiments on several real-world traffic data sets, and our results demonstrate the effectiveness of LATC in diverse missing scenarios.
翻译:从遥感系统中收集的瞬间交通时间序列(如交通量/速度)往往不完全,腐败严重,缺少的数值巨大,使用户无法利用数据的全部功率。缺少的数据估算是一个长期的研究课题,也是现实世界智能运输系统的关键应用。广泛应用的估算方法是低级别矩阵/10度完成;然而,低级别假设仅保留全球结构,而忽视了广度数据中当地高度的一致性。在本文中,我们建议采用低级别自动递增超标值(LATC)框架,使用户无法充分利用数据的全部功率。缺少的数据估算是一个新的正规化术语,用于完成第三级(传感器或美元时间,每天美元)的智能运输系统。第三级快速度结构使我们能够更好地捕捉全球交通数据的一致性,例如内在的季节性和日常数据的一致性。为了实现地方一致性,我们通过引入一个低水平递增递增递增的超额超额超额超额超额超额递增量计算(LATC)的快速递增量完成(LATC)框架,让每个货币递增的货币周期的周期的汇率变正值模型,让以往的汇率变变变变的汇率, 更能,让以往的货币变变的货币变的货币变的货币变数,让以往的货币变的货币变的变数, 变的货币变数,让以往的货币变数, 变数的货币变数的货币变数,以不同的货币变的变数,以不同的货币变数。