Software sandboxing or software-based fault isolation (SFI) is a lightweight approach to building secure systems out of untrusted components. Mozilla, for example, uses SFI to harden the Firefox browser by sandboxing third-party libraries, and companies like Fastly and Cloudflare use SFI to safely co-locate untrusted tenants on their edge clouds. While there have been significant efforts to optimize and verify SFI enforcement, context switching in SFI systems remains largely unexplored: almost all SFI systems use \emph{heavyweight transitions} that are not only error-prone but incur significant performance overhead from saving, clearing, and restoring registers when context switching. We identify a set of \emph{zero-cost conditions} that characterize when sandboxed code has sufficient structured to guarantee security via lightweight \emph{zero-cost} transitions (simple function calls). We modify the Lucet Wasm compiler and its runtime to use zero-cost transitions, eliminating the undue performance tax on systems that rely on Lucet for sandboxing (e.g., we speed up image and font rendering in Firefox by up to 29.7\% and 10\% respectively). To remove the Lucet compiler and its correct implementation of the Wasm specification from the trusted computing base, we (1) develop a \emph{static binary verifier}, VeriZero, which (in seconds) checks that binaries produced by Lucet satisfy our zero-cost conditions, and (2) prove the soundness of VeriZero by developing a logical relation that captures when a compiled Wasm function is semantically well-behaved with respect to our zero-cost conditions. Finally, we show that our model is useful beyond Wasm by describing a new, purpose-built SFI system, SegmentZero32, that uses x86 segmentation and LLVM with mostly off-the-shelf passes to enforce our zero-cost conditions; our prototype performs on-par with the state-of-the-art Native Client SFI system.


翻译:软件沙箱或基于软件的断层隔离(SFI) 是一种轻巧的方法, 用来用不信任的部件来建立安全系统。 例如, Mozilla 使用SFI 来通过沙箱第三方图书馆使Firefox浏览器硬化Fire浏览器, 以及像Sdloadflare这样的公司使用SFI 安全地将不信任的房客放在其边缘云层上。 虽然已经做出了重大努力来优化和核查SFI的强制执行情况,但SFI系统的背景转换基本上仍未进行探索: 几乎所有SFI系统都使用 memph{heavy体重过渡} 这些系统不仅容易出错,而且在环境切换时需要大量业绩管理。 我们确定一套emph{0cloforfox浏览器的运行方式,我们用Srlickr discoals的运行方式,我们用Srickr discorrupil化的运行方式来进行。

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
专知会员服务
26+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员