Cross-attention is an important component of neural machine translation (NMT), which is always realized by dot-product attention in previous methods. However, dot-product attention only considers the pair-wise correlation between words, resulting in dispersion when dealing with long sentences and neglect of source neighboring relationships. Inspired by linguistics, the above issues are caused by ignoring a type of cross-attention, called concentrated attention, which focuses on several central words and then spreads around them. In this work, we apply Gaussian Mixture Model (GMM) to model the concentrated attention in cross-attention. Experiments and analyses we conducted on three datasets show that the proposed method outperforms the baseline and has significant improvement on alignment quality, N-gram accuracy, and long sentence translation.


翻译:交叉关注是神经机器翻译的一个重要组成部分,在以往的方法中,通过点产品关注始终可以实现。然而,点产品关注只考虑单词之间的双向关联,在处理长期判决时导致分散,忽视源邻居关系。 语言的启发,上述问题是由于忽视一种类型的交叉关注,即所谓的集中关注,侧重于几个核心词,然后围绕这些词展开。在这项工作中,我们运用高森混合模型(GOMM)来模拟交叉关注的集中。我们在三个数据集上进行的实验和分析表明,拟议方法超过了基线,大大改进了对齐质量、N-克精确度和长句翻译。

0
下载
关闭预览

相关内容

【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
从2017年顶会论文看Attention Model
黑龙江大学自然语言处理实验室
5+阅读 · 2017年11月1日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
3+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
相关资讯
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
从Seq2seq到Attention模型到Self Attention(一)
量化投资与机器学习
76+阅读 · 2018年10月8日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
从2017年顶会论文看Attention Model
黑龙江大学自然语言处理实验室
5+阅读 · 2017年11月1日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员