Depression is a large-scale mental health problem and a challenging area for machine learning researchers in detection of depression. Datasets such as Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) have been created to aid research in this area. However, on top of the challenges inherent in accurately detecting depression, biases in datasets may result in skewed classification performance. In this paper we examine gender bias in the DAIC-WOZ dataset. We show that gender biases in DAIC-WOZ can lead to an overreporting of performance. By different concepts from Fair Machine Learning, such as data re-distribution, and using raw audio features, we can mitigate against the harmful effects of bias.


翻译:抑郁症是一个大规模的心理健康问题,也是机器学习研究人员在发现抑郁症方面的一个挑战领域,已经创建了诸如危难分析采访公司-奥兹魔法师(DAIC-WOZ)等数据集,以协助这一领域的研究,然而,除了在准确发现抑郁症方面固有的挑战外,数据集中的偏差可能导致分类表现偏斜。在本文件中,我们研究了DAIC-WOZ数据集中的性别偏见。我们表明,DAIC-WOZ的性别偏见可能导致业绩报告过度。通过公平机器学习的不同概念,例如数据再分配,以及使用原始音频特征,我们可以减轻偏见的有害影响。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
Arxiv
6+阅读 · 2021年7月26日
Arxiv
20+阅读 · 2020年6月8日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
3+阅读 · 2018年3月27日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【推荐】自动特征工程开源框架
机器学习研究会
17+阅读 · 2017年11月7日
Top
微信扫码咨询专知VIP会员