Global datasphere is increasing fast, and it is expected to reach 175 Zettabytes by 20251 . However, most of the content is unstructured and is not understandable by machines. Structuring this data into a knowledge graph enables multitudes of intelligent applications such as deep question answering, recommendation systems, semantic search, etc. The knowledge graph is an emerging technology that allows logical reasoning and uncovers new insights using content along with the context. Thereby, it provides necessary syntax and reasoning semantics that enable machines to solve complex healthcare, security, financial institutions, economics, and business problems. As an outcome, enterprises are putting their effort into constructing and maintaining knowledge graphs to support various downstream applications. Manual approaches are too expensive. Automated schemes can reduce the cost of building knowledge graphs up to 15-250 times. This paper critiques state-of-the-art automated techniques to produce knowledge graphs of near-human quality autonomously. Additionally, it highlights different research issues that need to be addressed to deliver high-quality knowledge graphs
翻译:全球数据范围正在迅速增长,预计到20251年将达到175 Zettabytes。然而,大多数内容都是没有结构的,而且机器无法理解。将这一数据构建成一个知识图,使得大量智能应用,如深问答、建议系统、语义搜索等。该知识图是一种新兴技术,它允许逻辑推理,并利用内容和上下文揭示新的见解。因此,它提供了必要的语法和推理语法,使机器能够解决复杂的保健、安全、金融机构、经济学和商业问题。结果之一是,企业正在努力建造和维护知识图以支持各种下游应用。人工方法费用太高。自动化方法可以将建立知识图的成本降低到15-250倍。本文批评了制作近人类质量自主知识图的先进自动化技术。此外,它强调了提供高质量知识图需要解决的不同研究问题。