We develop an algorithm which can learn from partially labeled and unsegmented sequential data. Most sequential loss functions, such as Connectionist Temporal Classification (CTC), break down when many labels are missing. We address this problem with Star Temporal Classification (STC) which uses a special star token to allow alignments which include all possible tokens whenever a token could be missing. We express STC as the composition of weighted finite-state transducers (WFSTs) and use GTN (a framework for automatic differentiation with WFSTs) to compute gradients. We perform extensive experiments on automatic speech recognition. These experiments show that STC can recover most of the performance of supervised baseline when up to 70% of the labels are missing. We also perform experiments in handwriting recognition to show that our method easily applies to other sequence classification tasks.
翻译:我们开发了一种算法, 可以从部分标签和未分割的相继数据中学习。 多数顺序损失函数, 如连接时间分类( CTC), 当许多标签缺失时会分解。 我们用星际时间分类( STC) 解决这个问题, 使用特殊的恒星符号来允许对齐, 包括所有可能标记, 只要标记丢失。 我们表示 STC 是加权有限状态传感器( WFSTs) 的构成, 并使用 GTN ( 与 WFSTs 自动区分的框架) 来计算梯度 。 我们在自动语音识别方面进行了广泛的实验 。 这些实验显示 STC 在高达 70% 的标签缺失时, 可以恢复受监督基线的大部分性能 。 我们还进行笔迹识别实验, 以显示我们的方法很容易应用到其他序列分类任务 。