Many collaborative human-robot tasks require the robot to stay safe and work efficiently around humans. Since the robot can only stay safe with respect to its own model of the human, we want the robot to learn a good model of the human in order to act both safely and efficiently. This paper studies methods that enable a robot to safely explore the space of a human-robot system to improve the robot's model of the human, which will consequently allow the robot to access a larger state space and better work with the human. In particular, we introduce active exploration under the framework of energy-function based safe control, investigate the effect of different active exploration strategies, and finally analyze the effect of safe active exploration on both analytical and neural network human models.
翻译:许多合作性人类机器人任务要求机器人在人类周围保持安全并高效工作。 由于机器人只能对其自身的人类模型保持安全, 我们希望机器人学会一个良好的人类模型,以便既安全又高效地采取行动。 本文研究使机器人能够安全地探索人类机器人系统空间的方法,以改善机器人的人类模型,从而使机器人能够进入更大的国家空间,更好地与人类合作。 特别是,我们在以能源功能为基础的安全控制框架下进行积极探索,调查不同积极探索战略的影响,并最终分析安全活跃探索对分析和神经网络人类模型的影响。