Data visualization is powerful in persuading an audience. However, when it is done poorly or maliciously, a visualization may become misleading or even deceiving. Visualizations give further strength to the dissemination of misinformation on the Internet. The visualization research community has long been aware of visualizations that misinform the audience, mostly associated with the terms "lie" and "deceptive." Still, these discussions have focused only on a handful of cases. To better understand the landscape of misleading visualizations, we open-coded over one thousand real-world visualizations that have been reported as misleading. From these examples, we discovered 74 types of issues and formed a taxonomy of misleading elements in visualizations. We found four directions that the research community can follow to widen the discussion on misleading visualizations: (1) informal fallacies in visualizations, (2) exploiting conventions and data literacy, (3) deceptive tricks in uncommon charts, and (4) understanding the designers' dilemma. This work lays the groundwork for these research directions, especially in understanding, detecting, and preventing them.
翻译:数据视觉化在说服观众方面是很有说服力的。 但是,当视觉化做不好或恶意做不好的时候, 视觉化可能会产生误导甚至欺骗。 视觉化会给在互联网上传播错误信息带来更大的力量。 视觉化研究界早就意识到了误导观众的视觉化, 大多与“ 否认” 和“ 欺骗” 等词有关。 但是, 这些讨论只集中在少数案例上。 为了更好地了解误导视觉化的景象, 我们公开编码了一千多个真实世界的视觉化, 被报告为误导。 我们从这些例子中发现了74种问题, 并形成了对视觉化中误导元素的分类学。 我们发现研究界可以遵循四个方向来扩大关于误导视觉化的讨论:(1) 视觉化中非正式的谬误,(2) 利用公约和数据知识,(3) 稀奇图中的欺骗伎俩,以及(4) 理解设计者的困境。 这项工作为这些研究方向奠定了基础, 特别是在理解、 发现和防止这些方向上。