项目名称: 液-液界面介导的贵金属纳米粒子自组装:和频振动光谱研究

项目编号: No.21273271

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 蔺洪振

作者单位: 中国科学院苏州纳米技术与纳米仿生研究所

项目金额: 82万元

中文摘要: 将纳米粒子组装成有序的二维或三维阵列对其应用具有重要的意义。液-液界面介导的自组装是制备纳米粒子二维有序薄膜的重要方法。人们已经研究证实此类自组装过程与纳米粒子与液-液界面的接触角密切相关,但对影响该接触角的关键因素还缺乏深入的了解。本项目拟采用具有高界面选择性的和频振动光谱技术研究贵金属纳米粒子在水-油界面上的自组装机制,通过考察液-液界面的分子组成、分子取向与构象等性质以及纳米粒子自组装过程对这些性质造成的影响,在分子水平上揭示液体对纳米粒子表面浸润现象的本质和关键影响因素,进一步通过改变溶剂种类或添加其他试剂,探索有目的性调控液-液界面性质的方法,拓展液-液界面介导纳米粒子自组装方法的应用范围。

中文关键词: 自组装;和频振动光谱;纳米粒子;液体界面;分子间相互作用

英文摘要: The assembly of nanoparticles into two- or three-dimensional ordered arrays is crucial for their applications. One of important approches to prepare ordered 2D films of nanoparticles is via liquid-liquid interface mediated self-assembly (LLIMSA). It has been proved that such self-assembly procedure is essentially determined by the contact angle between the nanoparticles and the liquid-liquid interface. However, the key factors affecting the contact angle has not yet been well understood. In this project, we propose to use sum frequency generation vibrational spectroscopy, a spectroscopic tool having high interface selectivity, to study the self-assembly mechanism of noble metal nanoparticles at water-oil interfaces. By investigating the interfacial properties such as chemical composition, molecular configurations and orientations, and how these properties are impacted during nanoparticle assembly, one can gain novel insights into the nature of wetting effect of liquids on nanosurfaces. Based on the gained knowledge, the liquid-liquid interfacial properties will be rationally tunned by selecting proper oil or adding proper reagent into the liquids.This study will broaden the application range of LLIMSA in fabricating well-ordered assemblies of nanoparticles.

英文关键词: Self-assembly;SFG vibrational spectroscopy;nanoparticles;liquid interfaces;intermolecular interactions

成为VIP会员查看完整内容
0

相关内容

《数据中台交付标准化》白皮书
专知会员服务
124+阅读 · 2022年3月21日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
16+阅读 · 2021年6月6日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
110+阅读 · 2021年4月7日
使用深度学习,通过一个片段修饰进行分子优化
人工智能预测RNA和DNA结合位点,以加速药物发现
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
《数据中台交付标准化》白皮书
专知会员服务
124+阅读 · 2022年3月21日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
16+阅读 · 2021年6月6日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
110+阅读 · 2021年4月7日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员