项目名称: 分子印记识别与磁性粒子类酶催化结合的选择性化学发光分析

项目编号: No.21275145

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 韩明勇

作者单位: 中国科学院合肥物质科学研究院

项目金额: 80万元

中文摘要: 化学发光分析以其灵敏度高、设备简单等优点,广泛应用在医学诊断、生化分析、环境监测及食品安全等领域。经典的化学发光体系普遍使用酶催化提高发光效率,用抗体识别目标种。然而生物材料性质不稳定、来源有限且价格昂贵,严重阻碍发光分析的发展和普及。针对上述难题,本研究项目拟运用纳米合成、纳米催化特性和仿生分子印记手段,发展新的选择性化学发光体系及其分析方法。重点针对有机磷农药分子结构特点,探索磁性纳米粒子表面和之间的分子印记新方法,设计制备具有高密度分子识别位点的磁性纳米探针。借助磁性粒子对化学发光的类酶催化增强效应和印记位点对目标分子的特异捕获能力,实现对目标种定性定量的超敏感分析。在验证对不同农残检测灵敏性、选择性和可靠性的基础上,建立不同印记磁性探针阵列组装的方法,结合成像分析,发展高通量的农残快速检测传感器,为未来高选择性、高度集成化和微型化的化学发光传感器件提供理论基础和技术储备。

中文关键词: 化学发光;纳米光学探针;可视化定量检测;农药残留;重金属离子

英文摘要: Chemiluminescence (CL) owns some unique advantages including high sensitivity, simplicity, low cost of instrumentation and maintenance, and hence has been used in quite diverse fields such as medical diagnostics, chemical/biological analysis, environmental monitoring and food safety. The traditional CL systems usually use enzyme to catalyzedly enhance CL intensity, and use antibody to improve the selectivity. However, these biological materials have some disadvantages such as poor stability, limited kinds and high cost, which limit the further development and popularization of CL assay. In this proposal, aiming at the above needs and difficulties, our strategy is to develop a selective CL system by a cooperative approach of nanotechnology, nano catalysis and molecular imprinting. Based on the molecular structure of the organophosphorus pesticides, we will explore the principle and method to molecular imprinting at surface of magnetic nanoparticles and in the matrix of magnetic nanoparticles, for preparing magnetic nanoprobes with high dense imprinted sites. Through the amplifying of CL signal by the peroxidase-like catalysis of magnetic nanoparticles and the selective binding of target molecules in the imprinted sites, the qualitative and quantitative analysis will be realized for untrasensitive detection of tar

英文关键词: Chemiluminescence;Nano optical probe;Visual quantitative detection;Pesticide residues;Heavy metal ions

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
118+阅读 · 2021年4月29日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
118+阅读 · 2021年4月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员