项目名称: 高效提升拉曼散射反Stokes效率的新型光纤及大面积有源光纤的研制

项目编号: No.61275092

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 简伟

作者单位: 北京交通大学

项目金额: 75万元

中文摘要: 利用单模光纤中自发拉曼散射所产生的反斯托克斯光可以实现高精度的分布式温度测量。但是由于单模光纤的芯径较小,使其输入光功率受到极大的限制,使长距离的温度测量遇到了无法逾越的障碍。本项目研制的高效提升拉曼散射功率的大模场面积新型光纤,其反斯托克斯光功率可以提高10倍以上,这将会使测温系统的信噪比大大提高,同时降低了信号处理的复杂性和成本。为了避免受激拉曼散射等非线性效应,高功率光纤激光器也需要在单模条件下保持大模场面积。本项目研制的稀土掺杂单模光纤模场面积预计将远在500um2以上。本项目通过对大模场面积光纤的理论分析与设计,探索光纤制造新工艺,得到优化的大模场面积单模光纤研制方案,研制出实用化的大模场面积无源及有源光纤。本项目研制的光纤对促进分布式温度传感以及高功率光纤激光器等领域的发展具有重要意义。

中文关键词: 拉曼散射;特种光纤;大模场面积;抗弯损;

英文摘要: The high-precision distributed temperature measurement can be achieved by measuring spontaneous Raman scattering Anti-Stokes in a single-mode fiber. As the fiber core is relatively small(8-10um), the input power is limited by nonlinearity of fiber while monitoring the temperature for long distance. For our proposed large-mode-area optical fiber, the power of Raman scattering will be enhanced more than 10 times, which not only improve the signal to noise ratio but also reduce the complexity and cost. To avoid the nonlinear effects, especially stimulated Raman scattering, a large-mode-area single-mode operation is needed for high-power fiber lasers. The mode area of this proposed single-mode doped fiber can be far above 500um2. Based on the analysis and design of large-mode-area single-mode fibers, we will explore the manufacturing process, achieve an optimum project of fabrication, and we will finally obtain passive or active fibers. This work is of significance for distributed temperature measurement and high-power fiber lasers.

英文关键词: Raman scattering;special optical fibers;large-mode-area;bend insensitivity;

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
21+阅读 · 2020年9月14日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
今晚 20:00 来少数派直播间一起玩玩旧手机
少数派
0+阅读 · 2021年11月26日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Transparent Shape from Single Polarization Images
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Knowledge Representation Learning: A Quantitative Review
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
21+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员