项目名称: 低温静电纺丝技术制备多孔结构微纳米陶瓷纤维及其成孔机理研究

项目编号: No.51202188

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 汤玉斐

作者单位: 西安理工大学

项目金额: 25万元

中文摘要: 微、纳米陶瓷纤维在高温过滤、吸声隔音和高效催化等领域应用时,其孔隙率和比表面积是影响性能的关键因素。如果在陶瓷纤维中制备一定数量的孔洞,则可以获得相对更高的孔隙率和比表面积,从而表现出优异的性能,所以制备具有多孔结构的陶瓷纤维成为目前陶瓷材料领域中的研究热点之一。本项目在静电纺丝过程中引入冷冻干燥技术,将纺丝液(纺丝溶胶和纺丝悬浊液)在低温环境中静电纺丝,控制电纺形成的液态纤维(拉伸成丝的纺丝液)不挥发或极少量挥发,并使其中的溶剂在低温下结晶,溶剂的结晶体在冷冻干燥后留下孔洞,最终获得多孔陶瓷纤维。重点研究低温静电纺丝制备多孔陶瓷纤维的工艺,揭示微米或纳米尺度下一维结构的分散体系在静电场下的低温结晶规律,并总结其成孔机理,实现对多孔陶瓷纤维中孔的尺寸、形态、分布和数量等的控制,为制备高性能陶瓷纤维材料奠定基础。

中文关键词: 静电纺丝;冷冻干燥;多孔陶瓷纤维;成孔机理;比表面积

英文摘要: The porosity and specific surface area are key factors for the performances of micro-nano ceramic fibers when applied in the fields of high temperature filtration, sound absorption and efficient catalysis, which makes it necessary to increase porosity and specific surface area of ceramic fiber to improve its performance. Fabrication of porous ceramic fibers having higher porosity and specific surface area than ordinary ceramic fibers is an important issue in the field of ceramic materials. In this project, freeze drying technology is introduced to the process of electrospinning. Two spinning solutions (the spinning sol and spinning suspension) are electrospun in the low-temperature environment, during which the liquid fibers (stretch the spinning solution into the silks) do not volatilize or only a little. Then, the solvent of liquid fibers is frozen in low-temperature environment. Porous ceramic fibers are obtained by freeze drying using solvent crystals as templates. To control the size, morphology, distribution and quantity of pores in porous ceramic fibers, key technologies of the porous ceramic fibers made by freeze-electrospinning and the crystallization law of decentralized system with one-dimensional structure in the electrostatic field are studied. This project will lay a foundation for paperation of hi

英文关键词: Electrospinning;Freeze drying;Porous ceramic fibers;Pore formation mechanism;Specific surface area

成为VIP会员查看完整内容
0

相关内容

专知会员服务
56+阅读 · 2021年10月4日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年12月28日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
20+阅读 · 2021年9月21日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
专知会员服务
56+阅读 · 2021年10月4日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
42+阅读 · 2021年6月2日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
20+阅读 · 2021年9月21日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员