项目名称: EAST面对等离子体钨瓦块缝隙结构对其燃料滞留和热负荷性能的影响

项目编号: No.11205198

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学II

项目作者: 丁芳

作者单位: 中国科学院合肥物质科学研究院

项目金额: 30万元

中文摘要: 为保证在高热负荷作用下可靠的结构稳定性和热移出能力,托卡马克面对等离子体部件将设计成小瓦块结构。这种结构带来两个主要问题,一是燃料和杂质粒子更容易在瓦块缝隙中聚集,此类部位的粒子很难用现有壁处理方法清除,给装置的安全运行带来隐患;二是瓦块缝隙边缘正对磁力线形成所谓的leading edge,易于导致局部过热甚至熔化,降低瓦块结构的热负荷性能,而制造和安装过程中的误差将加剧这一问题。针对国家大科学工程EAST托卡马克装置全钨壁计划的紧迫需求,本项目将主要借助EAST装置上的材料与等离子体实验平台开展钨瓦块缝隙结构对其氢同位素滞留和热负荷性能影响的研究,并结合计算模拟,探索其中的机制,进而通过对瓦块结构的优化设计,有效抑制燃料的滞留,改善瓦块结构的热负荷性能,为EAST的高参数长脉冲稳定运行提供良好的壁条件,同时也为国际热核实验堆ITER和未来的示范堆DEMO提供有价值的参考。

中文关键词: 钨瓦块;杂质沉积;托卡马克;前沿;有限元方法

英文摘要: The first wall and divertor plasma-facing components (PFCs) in tokamaks will be castellated by splitting them into small-sized tiles to achieve good thermo-mechanical stability and durability. However, along with the favorable significant reduction of the risk of the PFC failure, the use of castellation has triggered two critical issues: radioactive fuel may accumulate in the gaps of castellated structures, which are difficult to be cleaned in situ with the existing techniques, imposing a safty problem on the device operation; and power handling capability may be degraded significantly due to hot spots at the leading edges introduced by castellation, even worse with misaligned castellation. Recent simulations show possible applicability of tile shaping to mitigation of these two problems. To meet the urgent need of upgrading EAST PFCs into full tungsten tiles, this project is dedicated to the research of effects of gap geometry of tungsten plasma-facing castellated tiles on fuel retention and power handling of castellation, mostly by virtue of the newly-built material and plasma evaluation system (MAPES) on EAST. Through the combination of experiments and simulations, the underlying mechanism will be explored, and optimization of the castellation structure will be implemented to mitigate the fuel retention and t

英文关键词: tungsten tile;impurity deposition;Tokamak;leading edge;finite element method

成为VIP会员查看完整内容
0

相关内容

【报告分享】中国能源企业低碳转型白皮书,56页pdf
专知会员服务
21+阅读 · 2022年3月23日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
105+阅读 · 2021年4月7日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
13+阅读 · 2021年3月3日
Knowledge Representation Learning: A Quantitative Review
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员