项目名称: 磁性掺杂拓扑绝缘体:量子化反常霍尔效应的材料设计

项目编号: No.11504051

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 张薇

作者单位: 福建师范大学

项目金额: 22万元

中文摘要: 量子反常霍尔效应是在没有外磁场的情况下由自发磁化导致的量子化霍尔电导效应,其物理本质是自发磁化和自旋轨道耦合相互作用共同导致的拓扑非平庸的电子结构。本项目拟利用第一性原理计算,研究Co等过渡金属元素掺杂拓扑绝缘体β-Ag2Se、β-Ag2Te形成的磁序绝缘体。在其二维薄膜材料中,这种磁序极有可能导致拓扑非平庸的电子结构,产生量子反常霍尔效应。我们还将细致地研究Co及其他3d过渡金属元素掺杂β-Ag2Se、β-Ag2Te系统的合成条件、掺杂相图、磁性、居里温度、磁性耦合机制等。这样的材料设计,不但有望阐明实验上已发现的Co掺杂β-Ag2Se磁序绝缘体的产生机理,还会为实验实现和研究量子化反常霍尔效应提供理论指导。由于此效应利用的是电荷流,更易与现有的电子学技术兼容,它将推动新一代低能耗晶体管和电子学器件的发展。

中文关键词: 量子反常霍尔效应;拓扑绝缘体;自旋轨道耦合;第一性原理计算;过渡金属元素

英文摘要: Quantized anomalous Hall effect is a quantized Hall conductance effect coming from spontaneous magnetization in the absence of an external magnetic field. Its physical nature is that the combination of spontaneous magnetization and spin-orbit coupling leads to a topologically nontrivial electronic structure. This project will leverage first-principles calculations to investigate that topological insulators β-Ag2Se、β-Ag2Te form magnetically ordered insulators when doped with transition metal elements (such as Co, etc.). In 2D film materials, this magnetic order probably results in the topologically nontrivial electronic structure, generating the quantized anomalous Hall effect. We will also detailedly study the synthesis conditions, doping phase diagrams, magnetic performance, Curie temperature and magnetic coupling mechanism of β-Ag2Se、β-Ag2Te systems doped with Co or other transition metal elements. Such material design will not only clarify the formation mechanism of magnetic insulating property of Co-doped β-Ag2Se system observed in experiments, but also provide theoretical indications for experiments on the realization and study of quantized anomalous Hall effect. Because this effect leverages electrical charge current, it's easy to make it compatible with present electronics technology. It will promote the development of a new generation low energy consumption transistor and electronics devices.

英文关键词: Quantized anomalous Hall effect;Topological insulator;Spin-orbit coupling;First-principles calculations;Transition metal elements

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】双曲图像分割
专知会员服务
18+阅读 · 2022年3月14日
专知会员服务
37+阅读 · 2021年9月15日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
21+阅读 · 2021年6月26日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【2021新书】线性与矩阵代数导论,492页pdf阐述
专知会员服务
98+阅读 · 2021年5月24日
【经典书】信息论原理,774页pdf
专知会员服务
254+阅读 · 2021年3月22日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
【CVPR2022】双曲图像分割
专知会员服务
18+阅读 · 2022年3月14日
专知会员服务
37+阅读 · 2021年9月15日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
21+阅读 · 2021年6月26日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【2021新书】线性与矩阵代数导论,492页pdf阐述
专知会员服务
98+阅读 · 2021年5月24日
【经典书】信息论原理,774页pdf
专知会员服务
254+阅读 · 2021年3月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员