项目名称: 化学危险品安全运输不确定信息的知识表示与提取方法研究

项目编号: No.71271034

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 管理科学

项目作者: 陈燕

作者单位: 大连海事大学

项目金额: 53万元

中文摘要: 以申请人多年的数据挖掘研究成果为基础,以化学危险品运输的监控与管理研究为依托,以粗糙集、模糊理论为主体,以化学危险品在途运输中随机的实际业务信息系统为信息源,解决不确定信息知识获取在化学危险品在途运输中的安全管理问题。研究重点如下:1、运用粗糙集对多维不确定信息降维,解决不确定信息的知识表示;运用模糊概念格理论,拓宽知识约简与提取的研究;2、运用聚类分析对不确定信息进行知识划分;3、引入模糊关联规则算法,作为解决化学危险品在途安全运输与管理不确定信息知识获取重要研究途径;4、运用本体理论实现面向服务的不确定信息知识表示与获取的数据挖掘服务机理,实现化学危险品运输途中的相关联的数据挖掘模型。综合以上四个方面的研究,将从根本上全面解决面向复杂的、不确定信息的知识表示、约简、获取与推理等问题,提升不确定信息的数据挖掘理论研究水平。

中文关键词: 数据挖掘;粗糙集;聚类分析;关联规则;文本挖掘

英文摘要: With the fundamentals of the research findings of years on data mining of the applicant, this project takes rough set and fuzzy theory as the main part based on the monitoring and management of hazardous chemicals transportation with the information sources from practical business information system of hazardous chemicals transportaion to solve knowledge acquisition problems in the safety management of hazardous chemicals transportation with uncertain information. Research priorities are as follows. I. Rough set theory is applied to reduce dimensions of multi-dimensional uncertain information in resolving its knowledge representation; fuzzy concept lattice is introduced to broaden its research of knowledge reduction and acquisition. II. Clustering analysis is applied to divide knowledge for uncertain information. III. The fuzzy association rules mining algorithm is introduced to solve the knowledge acquisition with the uncertain information in management of hazardous chemicals transportation. IV. Ontology theory is applied to implemen service mechanism of data mining of uncertain information for knowledge representation and acquisition oriented service and to build up corresponding data mining model in hazardous chemical transportation. With the above four aspects of research, knowledge representation, reductio

英文关键词: Data Mining;Rough Set;Clustering Analysis;Association Rules;Text Mining

成为VIP会员查看完整内容
0

相关内容

数据挖掘(Data mining)一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息和知识的过程。
知识图谱研究现状及军事应用
专知会员服务
191+阅读 · 2022年4月8日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
50+阅读 · 2021年8月13日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
109+阅读 · 2021年4月7日
知识图谱在智能制造领域的研究现状及其应用前景综述
专知会员服务
157+阅读 · 2021年2月25日
专知会员服务
37+阅读 · 2020年10月15日
ICLR 2022|化学反应感知的分子表示学习
专知
0+阅读 · 2022年2月10日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【知识图谱】中医临床知识图谱的构建与应用
产业智能官
60+阅读 · 2017年12月18日
领域应用 | 中医临床知识图谱的构建与应用
开放知识图谱
33+阅读 · 2017年12月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关VIP内容
知识图谱研究现状及军事应用
专知会员服务
191+阅读 · 2022年4月8日
工业人工智能驱动的流程工业智能制造
专知会员服务
99+阅读 · 2022年3月9日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
50+阅读 · 2021年8月13日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
109+阅读 · 2021年4月7日
知识图谱在智能制造领域的研究现状及其应用前景综述
专知会员服务
157+阅读 · 2021年2月25日
专知会员服务
37+阅读 · 2020年10月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员