项目名称: 视觉跟踪中的数据驱动机制研究

项目编号: No.61300140

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 孙伟平

作者单位: 华中科技大学

项目金额: 23万元

中文摘要: 目前视觉跟踪算法基于模型驱动的计算模式与实际应用环境的复杂多变性不相适应,导致视觉跟踪方法缺乏对非事前预见变化的适应能力,实际应用环境发生变化时跟踪准确性下降,影响了视觉跟踪技术从实验验证向市场应用的转化。 课题从视觉跟踪应用需求、视觉跟踪算法流程和数据质量三个层面对影响视觉跟踪算法性能的因素及其相互关系进行全面分析,提出视觉跟踪中的数据质量状态驱动计算理论和关键技术,内容包括:建立数据质量演化机理,定义适合跟踪任务的数据质量评价指标和度量方法,研究数据质量演化抽象描述方法,建立数据质量状态演化模型,对不同生存周期、不同作用的数据的质量进行定性和定量分析;在此基础上,提出基于数据质量的数据/数据集描述方法、动态模型构建方法和控制参数设置方法,建立数据驱动与模型驱动相结合的跟踪算法自适应流程控制策略。 研究成果有助于提高跟踪算法和跟踪技术对应用场景和目标状态变化的适应能力。

中文关键词: 视觉跟踪;数据质量;数据驱动;自适应;

英文摘要: Current computing mode based on model-driven method in visual tracking does not adjust to the complicated and changing situation in practical applications. Tracking algorithms are less of adaptability to non-advanced predicted changes and their performance will decrease when practical situation changes, which limit the transition of visual tracking technology from experiment verification to application. After detailed analysis on factors affecting the performance in terms of application requirements, process of tracking algorithms and data quality, computering mode and key technologies of visual tracking driven by data quality state are proposed. Evolution mechanism of different data sets is studied firstly to provide qualitative analysis. Quantitative analysis is then provided by assessing data quality attributes which fit visual tracking tasks. Abstract description method of data quality evolution is also studied and the evolution model is established. Then key techniques related with the adaptability promotion are discussed, including method to describe data sets in algorithms, way to establish models dynamically and set up control parameters, flexible strategy of flow control in tracking fusing data driving mode and model driving mode. The research will help to promote the adaptability to non-advanced pre

英文关键词: visual tracking;data quality;data-driven;adaptation;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
36+阅读 · 2021年8月27日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
122+阅读 · 2021年7月22日
专知会员服务
41+阅读 · 2021年7月10日
专知会员服务
99+阅读 · 2021年6月23日
深度学习模型终端环境自适应方法研究
专知会员服务
34+阅读 · 2020年11月13日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
39+阅读 · 2019年12月5日
面向任务型的对话系统研究进展
专知
0+阅读 · 2021年11月17日
基于规则的建模方法的可解释性及其发展
专知
5+阅读 · 2021年6月23日
面向Transformer模型的高效预训练方法
哈工大SCIR
1+阅读 · 2021年6月5日
AB实验在滴滴数据驱动中的应用
DataFunTalk
15+阅读 · 2020年5月31日
综述 | 近5年基于深度学习的目标检测算法
计算机视觉life
38+阅读 · 2019年4月18日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
20+阅读 · 2020年6月8日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
专知会员服务
36+阅读 · 2021年8月27日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
122+阅读 · 2021年7月22日
专知会员服务
41+阅读 · 2021年7月10日
专知会员服务
99+阅读 · 2021年6月23日
深度学习模型终端环境自适应方法研究
专知会员服务
34+阅读 · 2020年11月13日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
基于深度学习的行人重识别研究进展,自动化学报
专知会员服务
39+阅读 · 2019年12月5日
相关资讯
面向任务型的对话系统研究进展
专知
0+阅读 · 2021年11月17日
基于规则的建模方法的可解释性及其发展
专知
5+阅读 · 2021年6月23日
面向Transformer模型的高效预训练方法
哈工大SCIR
1+阅读 · 2021年6月5日
AB实验在滴滴数据驱动中的应用
DataFunTalk
15+阅读 · 2020年5月31日
综述 | 近5年基于深度学习的目标检测算法
计算机视觉life
38+阅读 · 2019年4月18日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员