Brockett's necessary condition yields a test to determine whether a system can be made to stabilize about some operating point via continuous, purely state-dependent feedback. For many real-world systems, however, one wants to stabilize sets which are more general than a single point. One also wants to control such systems to operate safely by making obstacles and other "dangerous" sets repelling. We generalize Brockett's necessary condition to the case of stabilizing general compact subsets having a nonzero Euler characteristic in general ambient state spaces (smooth manifolds). Using this generalization, we also formulate a necessary condition for the existence of "safe" control laws. We illustrate the theory in concrete examples and for some general classes of systems including a broad class of nonholonomically constrained Lagrangian systems. We also show that, for the special case of stabilizing a point, the specialization of our general stabilizability test is stronger than Brockett's.
翻译:布洛基特的必备条件产生一个测试,以确定一个系统是否可以通过连续的、纯粹依赖国家的反馈稳定某些运行点。 但是,对于许多现实世界的系统,人们想要稳定比一个点更普通的系统。 我们还想通过设置障碍和其他“危险”的反射装置来控制这些系统的安全运行。 我们把布罗基特的必备条件概括为稳定一般的常规集束,在一般环境状态空间中具有非零电荷特性(mooth plans) 。 我们利用这种概括化,我们还为存在“安全”控制法制定了一个必要条件。 我们用具体的例子和一些一般的系统类别来说明理论,包括广泛的非热波受约束的拉格朗根系统。 我们还表明,在稳定一个点的特殊情况下,我们一般可稳定性测试的专业化程度比布罗基特的要强。