项目名称: 基于石墨烯纳米孔器件的DNA单分子探测研究

项目编号: No.51272007

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 赵清

作者单位: 北京大学

项目金额: 79万元

中文摘要: 纳米孔由于其可以在单分子量级上实现对生物分子结构的测量,引发了前沿交叉领域极大的关注与科研热情。基于固态纳米孔的DNA测序成为目前国际第三代基因测序仪(旨在24小时之内用1000美金完成对人体基因测序)研制中最有力的竞争者之一,成为国际上基础研究和应用探索的热点。目前此领域存在的最重要的两大问题是:纳米孔支撑膜过厚(空间分辨率过低)和DNA分子穿孔速度过快(时间分辨率过低)。本项目巧妙地将石墨烯与纳米孔结合起来,利用石墨烯超薄的单原子层厚度,优异的力学和电学性能大大提高基于石墨烯纳米孔对DNA进行单分子探测的空间分辨率。在此基础上,创新性的引入反向压强作为减速力场,用于减慢DNA穿过纳米孔的速度,从而大幅提高基于固态纳米孔DNA单分子探测的时间分辨率。通过调节电场与压强场的大小,预期可以实现对DNA的单分子探测,捕获,操控,为最终实现基于石墨烯纳米孔的基因测序打下坚实的基础。

中文关键词: 石墨烯;纳米孔;单分子探测;时间分辨率;DNA测序

英文摘要: Single-molecule detection based on nanopores has attracted intensive research interest in interdisciplinary field because they can realize biomolecule structure measurement on single-molecule level. DNA sequencing based on solid-state nanopores has become one of the most promising candidates in future third generation rapid and cost-effective gene sequencing research, which aims to fulfill one person genome sequencing in 24 hours by less than 1000 US dollars. There are two main challenges remaining in this field: one is the supporting membrane for nanopores is too thick to read single base level (low spatial resolution); second is that DNA translocation speed through nanopores is too fast to reach the device detection limit (low time resolution).In this project, we combine graphene and nanopore together to make graphene nanopores. Taking advange of the ultrathin single atomic layer thickness of graphene, plus its excellent mechanical and electric properties, spatial resolution of DNA single-molecule detection based on graphene nanopores can be greatly improved. More importantly, we are going to innovatively introduce pressure as counter flow field to slow down the speed of DNA translocation through nanopores. In this way, time resolution of DNA detection based on graphene nanopores can be enhanced significantly

英文关键词: graphene;nanopores;single molecule detection;time resolution;DNA sequencing

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
135+阅读 · 2021年9月20日
专知会员服务
30+阅读 · 2021年8月16日
专知会员服务
32+阅读 · 2021年7月26日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
自驾游走一趟,拿下铂陆帝的百万大奖
ZEALER订阅号
0+阅读 · 2021年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
3+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
14+阅读 · 2021年3月10日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
135+阅读 · 2021年9月20日
专知会员服务
30+阅读 · 2021年8月16日
专知会员服务
32+阅读 · 2021年7月26日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员