项目名称: 大数据环境下的证券市场操纵行为发现机理、模型与方法
项目编号: No.91546105
项目类型: 重大研究计划
立项/批准年度: 2016
项目学科: 管理科学
项目作者: 熊赟
作者单位: 复旦大学
项目金额: 43万元
中文摘要: 大数据应用是用大数据支持决策活动,产生新的决策方法和工作方式。近年来在大数据技术支持下,证券市场监管理念开始发生变革,产生了新的监管模式并初见成效。然而市场操纵行为隐蔽性强、难以甄别、查处成本高,及时发现并查处这些账户仍是证券监管面临的执法困境。大数据监管是一个全新课题,相关研究尚处在初期探索阶段,很多问题尚待研究。本项目首次系统的探索大数据环境下的市场操纵行为发现机理,具有前瞻性,提供证券市场大数据监管研究的新视角。首先,分析证券交易行为大数据特征,构建表示模型;然后,建立大数据环境下的市场操纵行为发现模型,设计面向市场操纵行为的大数据特异群组挖掘算法,揭示市场操纵行为特征;最后,以上海证券交易所为实证平台,检验方法的实用性和可扩展性。研究成果将为证券市场监管提供新型技术手段,对于证券市场监管模式创新研究具有重要科学意义;也为证券市场监管提供实证依据,具有实际价值。
中文关键词: 数据挖掘;大数据;证券市场监管;市场操纵
英文摘要: Big data technology leads to a fundamental shift in decision-making strategy and working style. It becomes an ever-increasing concern from the supervision and administration of the securities market. Some securities regulators realized the big data technology’s potential and have begun to apply regulatory strategies based on the collection and analysis of extensive data in innovative ways. However, it is always difficult to identify market manipulation behaviors due to their concealment and complexity. The study of big data technology in securities market regulation is still at an initial stage. This project is of the first time to study anomaly group mining in securities market via big data technology. It will provide a novel perspective to view securities market supervision mechanism. The topics of our project include, i. studying and modelling the securities trading behavior data, ii. formatting the problem of anomaly group mining of market manipulation in stock market via big data technology, iii. exploring effective and efficient anomaly group mining algorithms and conducting empirical research. This project will deliver an innovative solution for the stock market supervision and administration mechanism with great scientific and practical importance.
英文关键词: Data Mining;Big Data;Securities Regulation;Market Manipulation