项目名称: 石墨烯结构量子点的自旋电子态调制机理及自旋输运特性研究

项目编号: No.11347010

项目类型: 专项基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 赵俊

作者单位: 长江大学

项目金额: 20万元

中文摘要: 量子点结构是纳米电子器件的核心构件,石墨烯以其高温下的高电子迁移率、长时间的自旋弛豫、更佳的裁剪特性等特点成为制备新型可控量子点结构的理想材料。本项目根据当前理论与实验研究结果提出基于石墨烯材料的量子点结构模型,充分考虑起伏性无序对量子点与电极之间相互作用的物理机制和边缘缺陷对材料的沉积位置、体系的电子结构及输运特性的影响。采用量子电子结构模型与非平衡格林函数相结合的方法进一步发展对具有稳定纳米尺度结构量子点器件自旋电子态及自旋相关输运特性的预测,探索建立纳米尺度稳定结构、外场等参数控制体系,以有效调控石墨烯结构量子点的自旋相关电学性能。研究机械形变和分子吸附对量子点微纳尺度结构、自旋电子态和自旋相关输运特性的影响的内在机理,进而确立自旋电子输运特性相关的敏感参数控制体系准确地响应石墨烯量子点纳米尺度结构的微变化,为将来石墨烯量子点探测器/传感器与纳米电子器件的制造与应用提供理论参考。

中文关键词: 石墨烯;自旋输运;量子点;纳米电子学;

英文摘要: Quantum dots (QD) structure is the key component in the nanoelectronic devices. Graphene is the promising material to be served as the novel controllable QD structure owing to its high charge mobility and long time spin relaxation and the possibility for tailoring the nanostructure in high precision. We propose the QD nanoconstructured model in terms of the graphene nanomaterials according to the latest experimental investigations, taking the influences of rippling disorder on the interactions between the QD and the electrodes as well as edge disorder on the deposition position of the nanomaterial and electronic structures into account. We will make use of quantum electronic structure model combined with non-equilibrium Green's function and are dedicated to further develop this method to simulate the spin-dependent electronic states as well as spin-dependent electron transport characteristics of the stable QD structure in nanoscale with better precision. This project has been concentrated on establishing parameter system to effectively control the performance of spin-dependent electronic properties of the nanodevices by the stable structure in nanoscale and external field and other related factors. More importantly, this project is focused on the comprehensive understanding of physical mechanism for the influenc

英文关键词: Graphene;Spin-dependent transport;Quantum dot;Nanoelectronics;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
53+阅读 · 2021年10月16日
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
12+阅读 · 2019年4月9日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
专知会员服务
53+阅读 · 2021年10月16日
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员