项目名称: 原位纳米力学测试平台-原子力显微镜联用系统的研制及其探索丝素蛋白自组装-力学行为关系的研究

项目编号: No.51203024

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机高分子材料学科

项目作者: 钟建

作者单位: 复旦大学

项目金额: 25万元

中文摘要: 国内外对与原子力显微镜(AFM)联用的原位纳米力学测试平台(ISNTP)的研究还处在开发探索阶段,有必要研制便宜的、有效的、可用于较大尺寸材料或元件的、且试样尺寸能符合大部分国际和国内力学测试标准的ISNTP-AFM联用系统。通过对丝素蛋白(SF)自组装机理的深入了解,进而在制备过程中对SF的二级结构加以调控,制备出具有不同力学性能和降解性能等的SF基材料,满足不同的需求,是未来SF在生物医用材料领域应用中的重要发展方向。本研究拟系统研究SF及其短肽从分子水平,到纳米、微米水平,到宏观水平的自组装机理和影响因素;然后研制便宜的、有效的ISNTP-AFM联用系统,并研究SF自组装方式对SF基材料力学行为的影响,以及力对SF自组装结构的影响。本研究将为SF在生物医用材料领域中的应用提供理论依据和实验支持。研制的ISNTP-AFM联用系统将为纳米材料的开发与应用提供更为全面的实验工具。

中文关键词: 原子力显微镜;丝素蛋白;自组装;万能力学试验机;

英文摘要: In the world, the investigation, exploration and development of in situ nanomechanical testing platform (ISNTP) combining with atomic force microscope (AFM) is still in its early stage. It is necessary to develop a cheap and effective ISNTP-AFM system that can be used for the macroscopic specimens. In the ISNTP-AFM system, the specimens can meet most of the international and domestic mechanical testing standards. It is an important direction of silk fibroin (SF)-based biomedical materials to understand the SF self-assembly mechanism, regulate the SF secondary structure in the preparation process to prepare different SF-based materials with different mechanical and degradable properties for different biomedical needs. This study intends to systematically investigate the self-assembly mechanisms of SF and SF-related peptides from molecular level, to the nanometer and micron level, all the way up to the macro-level. Further, we will develop a cheap and effective ISNTP-AFM system, and then study the effect of SF self-assembly on the mechanical behavior of SF-based materials and the effect of force on the SF self-assembled structure. This study will provide theoretical basis and experimental support for the development of SF-based biomedical materials. The development of ISNTP-AFM system will provide a more comprehen

英文关键词: atomic force microscopy;silk fibroin;self-assembly;universal mechanical testing machine;

成为VIP会员查看完整内容
0

相关内容

AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
【数字孪生】数字孪生标准体系探究
产业智能官
47+阅读 · 2019年11月27日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年7月31日
小贴士
相关VIP内容
AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
25+阅读 · 2021年4月2日
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员