项目名称: 细胞在复杂管道内动态和流变行为的数值研究
项目编号: No.11502094
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 叶挺
作者单位: 吉林大学
项目金额: 22万元
中文摘要: 在生物和工业应用中,常常会遇到细胞在管道内的运动、变形以及聚集,如血液微循环过程。目前相关数值研究主要讨论细胞在简单管道中的情形,像矩形直管;然而实际中的管道往往非常复杂,如微循环中的毛细血管网。因此本项目将针对细胞在复杂管道内的情形进行数值研究,包括:1)细胞在复杂的分叉、弯曲和纽绞管道内的动态行为研究;2)细胞在复杂的分叉、弯曲和纽绞管道内的流变行为研究;3)细胞在分离芯片中的动态和流变行为研究。为此,我们建立了一个基于粒子的三维理论模型,包括描述流体流动的光滑耗散粒子动力学模型、细胞变形的离散非线性弹性模型、细胞相互作用的摩西势模型、细胞与流体相互作用的浸入边界法、以及处理复杂边界的虚拟边界法。本项目旨在:1)探讨细胞在复杂管道内的聚集对其运动和变形的影响;2)揭示细胞悬液在简单和复杂管道内流变行为的差别、3)分析细胞在分离芯片中的动态和流变行为,进而实现细胞分离芯片的优化。
中文关键词: 细胞力学;细胞流变学;细胞分离;粒子方法;流固耦合
英文摘要: The dynamic and rheological behaviors of cells in channels are of interest to a variety of biological and industrial applications, such as blood microcirculation. Currently, most of relevant numerical studies are focused on the cells in the simple channels, for example a rectangular channel. Unfortunately, the channels in practice are often complex, such as the capillary network in microcirculation. The present project will numerically study the cells in complex channels, including 1) the dynamic behavior of cells in the furcate, curvature and twisted channels, 2) the rheological behavior of cells in the furcate, curvature and twisted channels, and 3) the dynamic and rheological behaviors of cells in the separation chips. A 3D particle-based theoretical model is developed, consisting of the smoothed dissipative particle dynamics to model the fluid flow, the discrete nonlinear elasticity to model the cell deformation, the Morse potential model to describe the cell-cell interaction, the immersed boundary method to describe the cell-fluid interaction, and the virtual boundary method to treat the complex boundary. The present project aims to 1) probe the effects of cell aggregation on the cell motion and deformation in the complex channels, 2) reveal the differences of cell rheology in the simple and complex channels, and 3) analyze the dynamic and rheological behaviors of cells in the separation chips, and then optimize the separation chips.
英文关键词: Cell Mechanics;Cell Rheology;Cell Separation;Particle-Based Method;Fluid-Structure Interaction