项目名称: 基于人类视觉自然搜索和注意认知机制的行车环境交通标识检测跟踪与识别

项目编号: No.61273277

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 常发亮

作者单位: 山东大学

项目金额: 76万元

中文摘要: 针对无人驾驶车辆迫切需要解决的关键理论和技术问题,研究基于人类视觉自然搜索和注意认知机制的行车环境下交通标识检测跟踪与识别。包括:从人类视觉感知特点和认知机理出发,构建符合驾驶员交通标识认知特点的多视点信息融合车载视觉系统;研究基于远景和近景摄像机的组合视觉搜寻认知策略和算法,实现多分辨率视觉认知过程,远景摄像机采用单目立体视觉结构,用于标识焦点的显著性跳出计算,近景摄像机用于跳出标识焦点识别;构建具有驾驶倾向性的新型显著性视觉注意快速计算模型,研究数据和任务双向驱动的多分辨率标识显著性注意力计算策略,获取带驾驶倾向性的交通标识焦点和显著性顺序;研究基于自适应分段形状边界特征和分块颜色(灰度)分布特征的交通标识动态跟踪和完整标识分割算法,实现标识快速跟踪;研究运动图像模糊复原和归一化变形校正方法,以及基于关键点SIFT特征的感知器神经网络标识识别分类器;在车辆行车测试环境中进行实验验证。

中文关键词: 跟踪与识别;交通标志;视觉搜索;视觉注意力;多分辨率

英文摘要: Concerned with the critical theory and technical problems needed to be solved in the field of unmanned vehicle, we will study the traffic sign detection, tracking and recognition in a driving environment based on the driver-vison natural search and attention cognizance mechanism in this project. It has the following aspects: (1) Getting inspiration from the human visual perception and cognitive mechanism, we build a car-mounted vision system with multiple sight information fusion, which mimic the driver's visual perception characteristics for traffic signs; (2) Present a visual search and cognitive strategy and algorithm based on the fusion of far-range and close-range cameras, and we can get multi-resolution visual recognition results. The far-range camera which is constructed in a single-camara stereovison structure is used for the saliency jump calculation of the traffic sign focus, and the close-range one is used for the jumped traffic sign focus recognition; (3) Propose a new rapid saliency visual attention calculation model with driving tendency. In order to get the attention focus and saliency order of the traffic sign, we study the multi-resolution saliency attention calculation strategy that combines the bottom-up(data driving) and top-down (task driving)calculation processes, and the top-down presents

英文关键词: Target tracking and recognition;Traffic sign;Visual searching;Visual attention;Multi-resolution

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】整合少样本学习的分类和分割
专知会员服务
28+阅读 · 2022年3月31日
深度学习人脸特征点自动定位综述
专知会员服务
24+阅读 · 2021年12月1日
【博士论文】视觉语言交互中的视觉推理研究
专知会员服务
63+阅读 · 2021年12月1日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
29+阅读 · 2021年11月8日
专知会员服务
92+阅读 · 2021年8月29日
专知会员服务
20+阅读 · 2021年8月5日
专知会员服务
60+阅读 · 2021年5月11日
专知会员服务
70+阅读 · 2021年3月29日
「深度图像检索: 2012到2020」大综述论文,21页pdf
专知会员服务
42+阅读 · 2021年1月30日
深度学习目标检测方法综述
专知会员服务
276+阅读 · 2020年8月1日
【动态】第二届CSIG图像图形技术挑战赛冠军团队介绍
中国图象图形学学会CSIG
0+阅读 · 2022年1月12日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
知识图谱的自动构建
DataFunTalk
55+阅读 · 2019年12月9日
我国智能网联汽车车路协同发展路线政策及示范环境研究
自动驾驶汽车技术路线简介
智能交通技术
15+阅读 · 2019年4月25日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
22+阅读 · 2018年8月30日
小贴士
相关VIP内容
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
28+阅读 · 2022年3月31日
深度学习人脸特征点自动定位综述
专知会员服务
24+阅读 · 2021年12月1日
【博士论文】视觉语言交互中的视觉推理研究
专知会员服务
63+阅读 · 2021年12月1日
基于RGB-D图像的语义场景补全研究进展综述
专知会员服务
29+阅读 · 2021年11月8日
专知会员服务
92+阅读 · 2021年8月29日
专知会员服务
20+阅读 · 2021年8月5日
专知会员服务
60+阅读 · 2021年5月11日
专知会员服务
70+阅读 · 2021年3月29日
「深度图像检索: 2012到2020」大综述论文,21页pdf
专知会员服务
42+阅读 · 2021年1月30日
深度学习目标检测方法综述
专知会员服务
276+阅读 · 2020年8月1日
相关资讯
【动态】第二届CSIG图像图形技术挑战赛冠军团队介绍
中国图象图形学学会CSIG
0+阅读 · 2022年1月12日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
知识图谱的自动构建
DataFunTalk
55+阅读 · 2019年12月9日
我国智能网联汽车车路协同发展路线政策及示范环境研究
自动驾驶汽车技术路线简介
智能交通技术
15+阅读 · 2019年4月25日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员