项目名称: 聚合物纳米复合介质中空间电荷输运的数值模拟及应用研究
项目编号: No.51477095
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 电工技术
项目作者: 吴建东
作者单位: 上海交通大学
项目金额: 91万元
中文摘要: 本项目以空间电荷数值模拟为主,实验研究为辅展开工作:采用X射线三维成像、电子透射电镜等微观分析技术,研究纳米颗粒在复合介质中的分散状态和界面结构;采用空间电荷与松弛电流联合测量技术,研究复合介质中空间电荷和松弛机理的相关性;通过热刺激退极化电流谱和动态机械谱对比分析,研究纳米颗粒填充对复合介质中各类松弛的影响;基于相关理论提取复合介质中陷阱能级、陷阱密度、视在迁移率等特性参数变化规律,为空间电荷数值仿真提供参数设置依据;基于复合介质实验研究得出的规律,在传统双极性载流子输运模型基础上构建新的电荷输运模型,并通过数值算法研究设计空间电荷数值模拟平台;以实验研究提取的特性参数为依据,通过空间电荷、松弛电流的同步模拟结果和实验结果比对分析,校验新输运模型的可靠性,并研究复合介质中的空间电荷输运;通过超薄/超厚介质中空间电荷的数值模拟研究,评估数值模拟技术在绝缘介质空间电荷输运研究中应用的可行性。
中文关键词: 聚合物纳米复合介质;电荷输运;介电特性;空间电荷;数值模拟
英文摘要: In this project, numerical simulation of space charge behavior in polymer nanocomposite is study based on experiment research. The distribution of nano-filler in polymer and the interfaces between nano-filler and polymer matrix are investigated with microscopic analysis techniques, such as 3D X-ray microscope, transmission electron microscope (TEM). The relationship between space charge behavior and relaxation mechanism in nanocomposite are researched by simultaneous measurements of space charge and relaxation current. The thermally stimulated depolarization (TSDC) current and dynamic thermomechanic analysis (DMA) are also used to investigate the relaxation mechanism in nanocomposite. The variation of parameters, such as trap density, trap depth and apparent mobility, in nanocomposite with the introduction of nanosilica are evaluated by relevant theories based on experiment results. A new charge transport model is proposed, based on the experiment research of nanocomposite and traditional bipolar charge transport model. The numerical scheme of transport model is investigated and relevant numerical simulation software is designed for simultaneous simulation of space charge and relaxation current. Space charge behavior and relaxation current in nanocomposite are simulated based on the parameters evaluation by experiment results. The reliability of proposed transport model is assessed by the results comparison of simulation and experiment. The space charge distributions in ultra-thin/super thick specimens are simulated with the proposed transport model to understand charge transport in polymer. It could evaluate the feasibility of numerical simulation technology applying on research of space charge transport in polymer.
英文关键词: polymer nanocompsoite dielectric;charge transport;dielectric property;space charge;numerical simulation