项目名称: 电网互联环境下支持向量回归负荷预测模型研究

项目编号: No.71301067

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 管理科学

项目作者: 车金星

作者单位: 南昌工程学院

项目金额: 19万元

中文摘要: 在全国电网互联的总格局下,电网运行管理中大规模样本的电力负荷预测研究是一个普遍性的难题。本项目将围绕大规模样本的支持向量回归模型及相关问题展开研究工作,并将理论研究结果应用到大规模样本的电力负荷预测之中。具体的研究内容如下:(1)进行支持向量回归预测理论和方法的研究;(2)分析支持向量回归模型的性质,构建电力负荷预测的特定核函数;(3)提出大规模样本的关键训练数据选取新技术;(4)针对大规模样本的电力负荷预测问题,建立高精度、快速、简单以及稳健的支持向量回归模型,并用统计分析方法验证模型性质;(5)根据负荷预测模型结果提供电力公司缩减成本、安全稳定运行的指导意见。本项目是预测理论与方法、统计学习理论、电网运行管理的交叉,它的完成不仅完善了电网互联环境下大规模样本的关键训练数据选取技术及预测理论,而且可以为电力系统安全、稳定、经济运行的研究奠定基础。

中文关键词: 电网运行管理;大规模样本;负荷预测;支持向量回归;关键训练数据选取技术

英文摘要: Under the overall pattern of the national power grid interconnection, the large-scale sample electricity load forecasting research in power grid operation management is a universal hard problem. This project will focus on support vector regression (SVR) model and the related problems for large-scale sample data, the results of theoretical research will be applied to the large-scale sample electricity load forecasting. Specific contents are as follows: (1) study the forecasting theory and method of SVR; (2) analysis the nature of SVR model, build a specific kernel function for electricity load forecasting; (3) propose the new technology of key training data selection for large-scale sample data; (4) establish a high precision, fast, simple and robust SVR forecasting model for the large-scale sample electricity load forecasting, and demonstrate the applicability and the superiority of this model using statistical analysis technique; (5) provide the electric power company with guidance on cost cutting and safe, stable operation, based on the results of the load forecasting model. This project is the intersection of forecasting theory and methods, statistical learning theory, and grid operation management, its completion not only improves the key training data selection technology and forecasting theory of the larg

英文关键词: Power grid operation management;Large-scale sample;Load forecasting;Support vector regression;Key training data selection technique

成为VIP会员查看完整内容
1

相关内容

NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
41+阅读 · 2021年11月12日
专知会员服务
147+阅读 · 2021年8月7日
专知会员服务
99+阅读 · 2021年6月23日
专知会员服务
25+阅读 · 2021年6月17日
专知会员服务
233+阅读 · 2020年12月15日
【NeurIPS 2020】大规模分布式鲁棒优化方法
专知会员服务
26+阅读 · 2020年10月13日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
167+阅读 · 2019年12月4日
KDD Cup 2022竞赛信息汇总
机器学习与推荐算法
4+阅读 · 2022年3月31日
解读:《金融数据安全 数据安全评估规范》
THU数据派
6+阅读 · 2022年1月18日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
时间序列深度学习:状态 LSTM 模型预测太阳黑子(上)
R语言中文社区
19+阅读 · 2018年6月15日
基于强化学习的量化交易框架
机器学习研究会
30+阅读 · 2018年2月22日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
小贴士
相关VIP内容
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
41+阅读 · 2021年11月12日
专知会员服务
147+阅读 · 2021年8月7日
专知会员服务
99+阅读 · 2021年6月23日
专知会员服务
25+阅读 · 2021年6月17日
专知会员服务
233+阅读 · 2020年12月15日
【NeurIPS 2020】大规模分布式鲁棒优化方法
专知会员服务
26+阅读 · 2020年10月13日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
金融时序预测中的深度学习方法:2005到2019
专知会员服务
167+阅读 · 2019年12月4日
相关资讯
KDD Cup 2022竞赛信息汇总
机器学习与推荐算法
4+阅读 · 2022年3月31日
解读:《金融数据安全 数据安全评估规范》
THU数据派
6+阅读 · 2022年1月18日
交通评价指标概略
智能交通技术
15+阅读 · 2019年7月21日
时间序列深度学习:状态 LSTM 模型预测太阳黑子(上)
R语言中文社区
19+阅读 · 2018年6月15日
基于强化学习的量化交易框架
机器学习研究会
30+阅读 · 2018年2月22日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
微信扫码咨询专知VIP会员