项目名称: 有磁场情况下的密度泛函理论中的一些基本问题及相关应用
项目编号: No.11275100
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 潘孝胤
作者单位: 宁波大学
项目金额: 80万元
中文摘要: 研究有磁场情况下的量子多体系统是过去几十年来凝聚态物理的主要课题之一,本项目将研究作为凝聚态物理中一重要的计算理论-有磁场情况下的密度泛函理论中的一些基本问题,主要包括(1)流自旋密度泛函理论中的非唯一性问题和基本变量问题;(2)研究外电场对处在外磁场和谐振势下的多体系统的影响;(3)有限温度下流自旋密度泛函理论及其在计算热力学势,轨道磁化强度和电流密度等方面的应用;(4)一些精确可解模型的热力势的精确解析表达式的计算和相关应用。 对这些问题的解决,将把密度泛函理论正确地推广到有外磁场和考虑自旋塞曼作用的情形,为解决原有的计算问题和发展新的计算方法提供重要的理论依据。而其在有限温度的推广,将为研究量子多体系统的热力学及电磁学等特性提供一种重要理论和计算方法。
中文关键词: 流密度泛函理论;谐振势定理;量子点;玻色-爱因斯坦凝聚;
英文摘要: The study of the quantum many-body systems in the presence of a magnetic field is one of the major reseach areas of condensed matter physics in the past decades. In this project, we shall investigate some fundamental problems in one of the most extensively applied computational methods- - -Density Functional Theory(DFT) in the presence of a magnetic field. These problems are (1) Nonuniqueness and the basic variables problem in the Current-Spin Density Functional Theory(CSDFT);(2) Electric field effects on the quantum many-body system in a harmonic potential in the presence of a magnetic field;(3) Finite-Temperature CSDFT and its applications;(4)The magnetic and thermodynamic properties of some exactly solvable models. The progress in these problems will help us generalize DFT correctly to the case where a magnetic field and the Zeeman interaction are present. Togther with its further generalization to finite-temperature case, this then will provide us an important theory and computational tool to study the electronic, magnetic and thermodynamic properties of condensed matter.
英文关键词: Current-density Functional Theory;harmonic potential theorem;quantum dot;Bose-Einstein condensation;