项目名称: 近红外高光谱-偏振激光雷达精细探测气溶胶的关键技术与方法研究

项目编号: No.61308107

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 狄慧鸽

作者单位: 西安理工大学

项目金额: 28万元

中文摘要: 气溶胶的精细探测是研究大气与环境的重要课题。近红外波段的1064nm激光具有较强的沙尘和云雾探测能力,在星载与地基测云和气溶胶激光雷达中有广泛应用,但由于受到精细分光技术的限制,在此波段的精细探测数据还处于空白,给此波段的数据反演带来困难。本项目针对气溶胶对1064nm激光的散射特征,提出基于双通道Fabry-Perot(F-P)标准具作为高光谱滤波器件,精细分离米散射与瑞利散射信号。重点研究高光谱F-P标准具的优化设计与控制技术、近红外波段米散射与瑞利散射的精细分光技术以及微弱信号的提取技术,以期构建近红外波段的高光谱偏振激光雷达实验系统,进行实验观测研究,结合高光谱数据和偏振探测数据进行气溶胶特性参数的精细反演算法研究,获得气溶胶的精细散射特征及雷达比信息。研究成果将对我国大气环境监测具有重要意义,并且还可以为我国未来近红外波段的星载主动遥感仪器的地面标定技术提供科学数据及技术支撑。

中文关键词: 激光雷达;高光谱分光;气溶胶;偏振;近红外波段

英文摘要: The fine detection of aerosol is an important issue to study the atmosphere and the environment. 1064nm near-infrared laser has a strong dust and clouds detection capabilities, widely used in space-borne and ground-based Cloud-Aerosol Lidar. But due to the limit of the fine filter technology, the fine-detection data of aerosol at near-infrared wavelength is in the blank, which leads to great difficulty at data inversion. The subject put forwards a high-spectral-resolution spectroscopic method, according to the back-scattering spectrum character at 1064nm. A dual-pass Fabry-Perot etalon is chose as a high-spectral filter, and it extracts the Rayleigh signal superimposed with Mie scattering signal. We will focus on the optimal design of hyper-spectral Fabry-Perot etalon filter and the fine spectroscopic technique at near-infrared wavelength. A hyper-spectral-resolution and polarization lidar at near-infrared wavelength is expected to be built, and the experimental research is carried out in order to obtain the best design of the system. Aerosol retrieval algorithm based on hyper-spectral data and polarization signal is studied and inverted for the fine scattering characteristics and lidar ratio of aerosol at 1064nm. The research project will be the significance of atmospheric environmental monitoring, and can als

英文关键词: lidar;high-spectrum;aerosol;polarization;near-infrared wavelength

成为VIP会员查看完整内容
0

相关内容

【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
92+阅读 · 2022年4月17日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
19+阅读 · 2021年11月16日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
65+阅读 · 2021年5月3日
专知会员服务
43+阅读 · 2021年2月8日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
106+阅读 · 2020年11月27日
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
IEEE WHISPERS大规模高光谱目标跟踪挑战赛来了!
中国图象图形学报
60+阅读 · 2020年7月8日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
【学科发展报告】无人船
中国自动化学会
28+阅读 · 2019年1月8日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
38+阅读 · 2020年3月10日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【AI+军事】附PPT 《前瞻性分析:获得决策优势的方法》
专知会员服务
92+阅读 · 2022年4月17日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
19+阅读 · 2021年11月16日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
65+阅读 · 2021年5月3日
专知会员服务
43+阅读 · 2021年2月8日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
106+阅读 · 2020年11月27日
相关资讯
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
IEEE WHISPERS大规模高光谱目标跟踪挑战赛来了!
中国图象图形学报
60+阅读 · 2020年7月8日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
【学科发展报告】无人船
中国自动化学会
28+阅读 · 2019年1月8日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员