项目名称: 新型可控结构聚酰亚胺纳米复合纤维膜的制备、介电性能及其耐电晕机理研究

项目编号: No.51207009

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 电气科学与工程学科

项目作者: 查俊伟

作者单位: 北京科技大学

项目金额: 26万元

中文摘要: 应对世界"节能"需求,变频技术受到越来越广泛的应用。因各种原因引起的大批电机绝缘过早破坏,是电机使用变频技术后面临的一大难题。国内外学者通过普通共混或原位聚合的方法研制了聚酰亚胺耐电晕薄膜,但由于其制备方法在纳米粒子分散问题上的局限性,使得材料的耐电晕性能不稳定且分散性较大,对机理的研究至今也没有统一的认识。静电纺丝是一种高效便捷的制备纳米纤维的纺丝技术。2006年1月20日出版的《Science》杂志对此有专题报道。申请人提出通过静电纺丝工艺获得新型可控结构的高性能聚酰亚胺/无机纳米复合纤维膜,重点研究纳米纤维结构的设计(材料选取、纳米纤维直径、串珠结构、空间排布等)对绝缘特性的影响规律,同时研究纳米复合纤维膜的介电性能(介电常数、电导率等)、 空间电荷和表面带电与电晕老化特性,揭示材料组成、制备工艺、多层次结构与介电性能和绝缘老化特性之间的相互关系,提出纳米复合纤维膜的耐电晕机制。

中文关键词: 聚酰亚胺;静电纺丝;纳米复合;介电性能;机理

英文摘要: In recent years, use of variable frequency technology in industries has continuously increased because of the demand for energy-saving. However, the remarkable difficulty face to us is that pre-breakdown of the invertors. To extend the lifetime of inverter-fed motors insulation,the researchers have taken lots of studies on the preparation of polyimide films by employing blend or in-situ polymerization. However, the corona resistance with dispersivity was not good enough in practice use. The reason is that the method of preparation is not good for nanoparticles dispersived in the polymer matrix. There was no accordance with the mechanism of corona resistance among the researches. Electrospinning is an efficiency and convenient method of preparing nanofibers which has been reported in Science published in January 20, 2006. In this proposal, we present that the novel high performance polyimide/inorganic nanofiber films with controllable structures were prepared by electrospinning. We focus the design of the structure of the fibers on insulating properties, considering with the diameter and distribution of nanofiber, beads-in-wire structures. The dielectric properties, surface potential, space charge and corona aging of the nanofiber films were also studied. The relationship between the consistence of the films and

英文关键词: Polyimide;Electrospinning;Nanocomposites;Dielectric property;Mechanism

成为VIP会员查看完整内容
0

相关内容

专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
51+阅读 · 2020年12月28日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
57+阅读 · 2022年1月5日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员