项目名称: 电控“雕塑”薄膜研究

项目编号: No.61205211

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 齐红基

作者单位: 中国科学院上海光学精密机械研究所

项目金额: 29万元

中文摘要: "雕塑"薄膜是指通过人工方法控制薄膜的生长行为,在尺度10-100nm范围内具有不同微结构的新型纳米薄膜材料。通过控制"雕塑"薄膜的生长行为,可以得到不同于传统光学薄膜、具有各向异性微结构的新型薄膜材料,对于偏振光学器件的发展有着潜在的重要研究和应用价值,特别是对于光学系统集成化有显著的促进作用。传统"雕塑"纳米薄膜材料均不具备外场调节功能,无法通过外加电场来调节元件性能,不能实现主动光学元件的制备。本项目基于已有"雕塑"薄膜光学性质计算程序、"雕塑"薄膜制备实验条件,开展电控"雕塑"薄膜的生长机理、结构设计及制备等研究工作,研究电控"雕塑"薄膜性能,尤其是介电张量与各向异性的微结构之间的关系,电控"雕塑"薄膜性能对于外加电场的依赖关系,实现其介电张量的主动调节,并在此基础上探讨基于主动调节的电控"雕塑"薄膜的新型光电器件制备。该项目在光学和材料学领域都有着深刻的学术价值和广泛的应用前景。

中文关键词: 雕塑薄膜;倾斜角度沉积技术;电控雕塑薄膜;二氧化钛雕塑薄膜;

英文摘要: Sculptured thin film(STF)are nanostructured inorganic materials with anisotropic and unidirectionally varying properties that can be designed and realized in a controllable manner. The matter at the 10 to 100 nm length scale exhibits continuum properties, but the molecules and the clusters of small size can still display their individuality. STF exhibits anisotropic properties, not similar to the conventional isotropic thin-film material, which is very important to the developement of polarizing component for the miniaturization of integrated optical system. The conventional STF can not be changed by outer electric field. That is to say, it's impossible to realize the active optical component with this kind of STF materials. In this project, based on the developed glancing angle deposition setup and software package, electrically controllable STF material is deposited. The relationship between the diectric tensor and microstructure, the dependence of diectric tensor on the modulated DC voltage, are investigated. Then the active optical components are proposed based on the electrically controllable STF materials.

英文关键词: Sculptured thin film(STF);glancing angle deposition technique;electrically controllable STF;TiO2 sculptured thin films;

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
【百图生科宋乐博士】 人工智能赋能医药研发
专知会员服务
27+阅读 · 2022年3月17日
【南洋理工-CVPR2022】视觉语言模型的条件提示学习
专知会员服务
32+阅读 · 2022年3月13日
数据中心传感器技术应用 白皮书
专知会员服务
38+阅读 · 2021年11月13日
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
14+阅读 · 2021年8月2日
注意力图神经网络的小样本学习
专知会员服务
190+阅读 · 2020年7月16日
一文搞懂redis
阿里技术
1+阅读 · 2022年3月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
SkiQL: A Unified Schema Query Language
Arxiv
0+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2021年12月22日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Arxiv
99+阅读 · 2020年3月4日
Arxiv
29+阅读 · 2019年3月13日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
【百图生科宋乐博士】 人工智能赋能医药研发
专知会员服务
27+阅读 · 2022年3月17日
【南洋理工-CVPR2022】视觉语言模型的条件提示学习
专知会员服务
32+阅读 · 2022年3月13日
数据中心传感器技术应用 白皮书
专知会员服务
38+阅读 · 2021年11月13日
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
14+阅读 · 2021年8月2日
注意力图神经网络的小样本学习
专知会员服务
190+阅读 · 2020年7月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员