项目名称: Ag纳米颗粒链的制备及其基于表面等离激元的亚波长尺度下光传输特性研究

项目编号: No.11204307

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 许少辉

作者单位: 中国科学院合肥物质科学研究院

项目金额: 28万元

中文摘要: 基于表面等离激元技术的光学器件可以克服传统光学器件受衍射极限限制的缺点,实现在纳米尺寸下对光的传输和操控。一维贵金属纳米颗粒链作为激发和控制表面等离激元的结构之一,由于其结构设计的自由性以及能够排成复杂的形状,有望实现真正意义上的波导型纳米器件。理论研究表明贵金属颗粒链光传输性能可通过优化其几何参数以及引入光增益介质来调控和改善。本项目中,在金属超晶格纳米线基础上,通过对其进行成分选择性去除,制备一维Ag纳米颗粒链并实现对其几何参数包括颗粒尺寸、长径比及颗粒间距的调控;通过对其进行成分选择性氧化,将增益介质引入金属颗粒链结构中。系统研究几何参数和光增益介质对共振波长和传输距离的影响,总结规律,建立光传输性能随几何参数和光增益介质的变化关系;并以此为指导优化Ag颗粒链参数设计,实现高效率光传输。此项研究将为理论研究提供系统的实验依据,并将为后期纳米光学器件的设计与制作提供一定的基础与指导。

中文关键词: 贵金属颗粒链;可控制备;几何参数;光传输;增益介质

英文摘要: Optical devices based on surface plasmon-polaritons technology can overcome the shortcoming of converntional optical devices which restricted by the diffraction limit, and transimit and munipulate the light in nanometer-size. One-deimensional nobel metal nanoparticle chain as a structure to simulate and control the surface plasmon-polaritons, due to some degrees of freedom in design and arrangment in a more complex shape,is expected to achieve a true sense of waveguide-type nano device. Theoretical studies indicated that, the optical transmission properties of the nobel metal particle chain can be controlled and improved by optimizing the geometric parameters and introducing the optical gain medium. In this project, we firstly fabricate the metallic superlattice nanowires, and then selectively remove one component to acquire the Ag nanoparticle chain with adjustable geometric parameters containing particle size, aspect ratio and particle diatance; introduce the optical gain medium into the Ag nanoparticle chain by a selective oxidation of the constituent of superlattice nanowires. We Systematically study the impact of the geometric parameters and optical gain medium on the optical transmission performance containing resonant wavelength and tramission length,summarize up the law and establish the relationship of

英文关键词: precious metal nanoparticles chain;controllable fabrication;geometric parameters;light transmission;gain medium

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
211+阅读 · 2021年8月2日
专知会员服务
229+阅读 · 2021年6月3日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【干货书】图形学基础,427页pdf
专知会员服务
145+阅读 · 2020年7月12日
专知会员服务
49+阅读 · 2020年6月14日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月7日
Arxiv
13+阅读 · 2021年5月25日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【经典书】图论,322页pdf
专知会员服务
121+阅读 · 2021年10月14日
专知会员服务
211+阅读 · 2021年8月2日
专知会员服务
229+阅读 · 2021年6月3日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【干货书】图形学基础,427页pdf
专知会员服务
145+阅读 · 2020年7月12日
专知会员服务
49+阅读 · 2020年6月14日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员