项目名称: 微/纳尺度下碳纳米管光机电耦合性能研究

项目编号: No.21273269

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李清文

作者单位: 中国科学院苏州纳米技术与纳米仿生研究所

项目金额: 81万元

中文摘要: 纳尺度下的量子效应、界面效应、局域场与外场的耦合效应以及原子和分子间复杂的相互作用使得低维纳米材料可呈现出多种奇特的多物理耦合性质,这些功能特性的发现将为新型纳功能器件和智能材料的设计与发展提供了新的原理与思路。碳纳米管是一类典型的低维电子材料,其特有的中空结构和结构可调制的力学、电学、光学等性能,是深入研究和理解纳尺度多场耦合特性理想的研究对象。为此,我们将以自研制的扫描近场多功能探针系统为基本研究手段,以超长单根碳纳米管与碳纳米管纤维为研究对象,比较研究不同尺度下局域场或外场诱导的碳纳米管的机/电和光/电耦合特性;探讨碳纳米管结构、聚集态及表面改性对其光/机/电耦合性能的影响,以期为具有机电、光电能量转化的碳纳米管柔性器件与织物的开发、设计与加工提供依据。

中文关键词: 碳纳米管;纤维;耦合;维纳尺度;功能器件

英文摘要: The unique phenomena derived from low-dimensional nanomaterials including size and quantum effect, interfacial effect, coupling effect under a localized field and foreign field and complex interaction between atoms and molecules have enabled them with a variety of amazing coupled physicochemical properties, which may provide new principles and strategies to design and fabricate novel functional composite materials and devices. Carbon nanotube is a typical one-dimensional electronic nanomaterial, whose hollow structure and tunable structure-dependent mechanical, electrical and optical properties make it an ideal model to deeply explore and understand the multiphysics coupled effects at the nanoscale. As a result, by utilizing our home-made near-field multifunctional scanning probe microscopic system, with individual tubes and their fiber assemblies as targets, we will make a comparative study on their electromechanical and optoelectronic properties under different scales and induced fields, and comprehensively understand the effects of tube structures, assembly morphology and surface properties on these coupled phenomena. It's hoped that this project will help to offer useful strategies for designing and fabricating carbon nanotube based flexible functional devices and textiles, for applications in optoelectronic

英文关键词: carbon nanotube;fiber;coupling;micro/nano scale;functional device

成为VIP会员查看完整内容
0

相关内容

专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
基于深度学习的行人检测方法综述
专知会员服务
69+阅读 · 2021年4月14日
专知会员服务
30+阅读 · 2021年4月12日
专知会员服务
26+阅读 · 2021年4月2日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
27+阅读 · 2021年8月24日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
基于深度学习的行人检测方法综述
专知会员服务
69+阅读 · 2021年4月14日
专知会员服务
30+阅读 · 2021年4月12日
专知会员服务
26+阅读 · 2021年4月2日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
31+阅读 · 2020年12月14日
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员