项目名称: 基于发动机暂态控制改善油电混合动力链节能与排放优化策略研究

项目编号: No.61304128

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 张江燕

作者单位: 大连民族学院

项目金额: 23万元

中文摘要: 节能/减排不仅是传统汽车控制技术面临的紧要问题,为充分发挥油电混合动力技术带来的优越性,混合动力汽车同样面临改善节能及排放性能的挑战性控制问题。近年来,以节省油耗为目标的能源分配优化问题受到了广泛关注。然而研究都集中针对动力链静态或准静态状态下控制算法的实现。由于大部分污染物的排放都来自发动机在不同运行模态切换的暂态过程,加之采用混合动力技术引入的频繁的发动机暂态运行,忽略暂态特征限制了改善系统排放性能的空间。 课题基于前期发动机暂态控制问题的研究,进一步研究通过发动机暂态控制以及考虑其暂态性能下整个动力链的优化控制来提高节能性能,研究用于混合动力链的频繁切换、多暂态工况下发动机排放性能的优化控制策略以及兼顾节能与排放性能的混合动力链的优化控制策略。采用非线性滚动时域控制,在解决针对动力链系统单体优化控制问题的同时,进一步开发理论工具用于解决当系统受到行驶环境等的随机干扰时的优化控制问题。

中文关键词: 汽车动力链;混合动力汽车;节能/减排;优化控制;基于模型的设计

英文摘要: Hybrid electric vehicle (HEV) powertrain has been introduced to our life as a key technology for next generation vehicles. Fuel consumption/emission reduction not only for conventional automotive vehicles is crucial, but also for HEV powertrain. Currently, existing studies focus mostly on optimizing the HEV power management for fuel economy, and the results are presented by considering static or quasi-static operations. As is well-known, most of emissions are generated during the transient stage due to the switching of engine operation modes. Moreover, it is natural to introduce more frequent transient operations to the engine used in HEV powertrain. Hence, the potential possibility for emission reduction is lost when the transient characteristics is neglected. Based on the research on transient control of gasoline engines, this research pays further efforts to develop optimal control algorithms for fuel economy of the whole powertrain by considering the transient control of HEV-oriented engine and the transient performance. Especially, attentions pay to investigate the optimal control algorithms for emission reduction during the frequent switching generated the multi-transient operation modes as well as give considerations for performance improvement of fuel economy and emission reduction simultaneously. Using

英文关键词: Automotive Powertrain;Hybrid Electric Vehicle;Fuel Consumption/Emission Reduction;Optimal Control;Model-based Design

成为VIP会员查看完整内容
0

相关内容

Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
28+阅读 · 2021年9月17日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年3月25日
专知会员服务
136+阅读 · 2021年2月17日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
62+阅读 · 2020年5月25日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
46+阅读 · 2020年5月23日
最新《智能交通系统的深度强化学习》综述论文,22页pdf
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
105+阅读 · 2020年3月2日
别再碰燃油车
创业邦杂志
0+阅读 · 2022年4月6日
造卫星的技术抢滩自动驾驶市场,你准备好了吗?
创业邦杂志
0+阅读 · 2022年4月6日
为何我们还需要摩卡DHT-PHEV这样的动力方案?
机器之心
0+阅读 · 2022年3月8日
「海风」扑面,化解凛冬之中的能源危机
机器之心
0+阅读 · 2021年11月29日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
小贴士
相关VIP内容
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
专知会员服务
28+阅读 · 2021年9月17日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年3月25日
专知会员服务
136+阅读 · 2021年2月17日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
62+阅读 · 2020年5月25日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
46+阅读 · 2020年5月23日
最新《智能交通系统的深度强化学习》综述论文,22页pdf
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
105+阅读 · 2020年3月2日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员