项目名称: 基于高产核黄素枯草芽孢杆菌全基因组突变分析的逆向代谢工程研究

项目编号: No.21206112

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 化学工程及工业化学

项目作者: 王智文

作者单位: 天津大学

项目金额: 25万元

中文摘要: 通过逆向代谢工程重构目标表型菌株,是确定优良突变株基因型-表型关系,分析优良表型遗传机理的一种有效手段。实验室前期进行了高产核黄素枯草芽孢杆菌突变株全基因组测序和比较基因组分析。在此基础上,本项目拟利用无痕基因操作技术,分析突变枯草芽孢杆菌高产核黄素的优良表型与基因型之间对应关系,鉴定重要有利突变或突变组合,并评估其对高产表型的贡献度,探讨重要有利突变的调控机制,阐明枯草芽孢杆菌高产核黄素的遗传机理,最终重构只含有利突变的核黄素高产菌。基于全基因组尺度的突变分析,能够从整个代谢网络角度分析突变与表型的关系,发现有利突变或突变组合,进行枯草芽孢杆菌产核黄素的系统代谢工程,加深对枯草芽孢杆菌产核黄素遗传调控机理的认识;同时,新发现的优良表型突变还可应用到其它相关生物基产品的代谢工程研究,因此,本项目研究具有重要的科学意义和应用潜力。

中文关键词: 枯草芽孢杆菌;基因组编辑;核黄素;突变分析;逆向代谢工程

英文摘要: Inverse metabolic engineering is an effective way to link genotype and phenotype of mutation strains with improved performance, revealing detailed knowledge of genetics or physiology of the producing strains. Based on comparative mutation analysis of riboflavin high-producing Bacillus subtilis strains with their reference through whole-genome sequencing, the present project aims to investigate the genotype-phenotype correlations of mutant riboflavin producing B.subtilis strains, to identify and evaluate the key relevant mutations or mutation combinations leading to riboflavin accumulation.The identified key mutations or mutation combinations will be further investigated on molecular basis for improved performance, preferably in order to understand the underlying genetics and biochemical mechanism of riboflavin prodction from B.subtilis. Finally, Only the relevant mutations are resconstructed to generate a defined mutant with the optimal mutation set that is necessary and sufficient for high-level riboflavin production in wild-type B.subtilis strain. The whole-genome mutation analysis, enabled by next-generation sequencing, not only can indentify relevant mutations for improved performance,but also link mutant genotype and phenotype from global metabolic network by a reverse metabolic engineering approach. Identi

英文关键词: Bacillus subtilis;Genome editing;Riboflavin;Mutation analysis;Inverse metabolic engineering

成为VIP会员查看完整内容
0

相关内容

专知会员服务
15+阅读 · 2021年8月6日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
23+阅读 · 2021年4月21日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
一文看懂常用特征工程方法
AI研习社
17+阅读 · 2018年5月2日
自动泊车系统发展现状及前景分析 | 厚势
厚势
22+阅读 · 2018年1月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关主题
相关VIP内容
专知会员服务
15+阅读 · 2021年8月6日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
23+阅读 · 2021年4月21日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
相关资讯
一文看懂常用特征工程方法
AI研习社
17+阅读 · 2018年5月2日
自动泊车系统发展现状及前景分析 | 厚势
厚势
22+阅读 · 2018年1月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员