项目名称: H钝化Si(100)表面卟啉分子隧道结电致发光特性研究

项目编号: No.11304317

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 张超

作者单位: 中国科学院合肥物质科学研究院

项目金额: 30万元

中文摘要: 量子尺度的硅基光电集成是未来信息技术的重要方向,其科学基础是纳米尺度上的光电相互作用和转化,在纳米器件领域具有广泛的应用前景。在本项目中,我们将采用扫描隧道显微镜(STM)诱导发光技术,对纳米尺度下半导体表面分子的光电转化现象进行高分辨表征。项目选择含π共轭单元的卟啉类分子作为研究对象,利用STM高度局域化的隧穿电子,研究隧道结半导体Si(100)表面上分子的电致发光特性,探索分子在纳米环境中的光电行为以及分子与周围量子结构和环境之间的能量演化现象与机制。进一步从量子尺度上理解分子在隧道结中的发光现象,特别是隧道结中电子、激子、声子和光子之间的相互转化和耦合过程。探讨隧道结中等离激元对分子发光的调制现象和机理,更加深入地认识电子-空穴载流子的复合形成机制以及能量转移动力学过程。本课题将加深人们对量子尺度光电转化现象的认识,对纳米光电器件的制备具有重要的指导意义。

中文关键词: 电致发光;扫描隧道显微镜;表面和界面;光电子学;超快动力学

英文摘要: The important research direction for future information technologies is nanoscale silicon based optoelectronic integration, whose scientific basis lies in the control of the interaction between photons and electrons and has potential applications in nano-devices. In this project, we will use the experimental techniques which is called scanning tunneling microscope induced luminescence to study the nanoscale optoelectronics of molecules on semiconductor surface. Taking the high conjugated πtype porphyrin molecules as the research object, we will study the electroluminescence properties of molecules on the hydrogen terminated Si(100) surface and explore the optoelectronic behavior of molecules in a nano-enviroment,the interaction of molecules with surroundings and the energy decay kinetics of excited states. This will further deepen our understanding of the luminescence from molecels in the tunneling junction on the quantum scale, in particle regarding the inter-conversion and coupling between electron,exciton, phonon and photon. Meanwhile, we will investigate the influence of plasmon on the modulation of luminescence of molecules and get a deeply understand of the recombination mechanism of electron-hole pairs and the kinetic process of the energy transfer. The project is helpful for us to know the optoelectroni

英文关键词: Electroluminescence;Scanning tunneling microscope;Surface and interface;Optoelectronics;ultrafast dynamics

成为VIP会员查看完整内容
0

相关内容

【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
65+阅读 · 2021年7月4日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知
0+阅读 · 2021年12月26日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关资讯
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知
0+阅读 · 2021年12月26日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员